

Weld Cracking in a Cast Ni-based Superalloy

Sukhdeep Singh¹, Joel Andersson²

1. Department of Industrial and Materials Science, Chalmers University of Technology, Sweden

2. Department of Engineering Science, University West, Sweden

Introduction

Cast Haynes[®] 282[®]

Segregating phase

Haynes [®] 282 [®]	γ´ (gamma prime)	Mo-enriched
Alloy 718	γ´´ (double-prime)	Nb-enriched

Strengthening phase

	Ni	Fe	Cr	Со	Nb	Мо	Ti	ΑΙ	 Si	В
Cast 282	Bal.	0.1	19.4	10.2	0.1	8.4	2.12	1.5	 0.01	0.005
Cast 718	52.98	Bal.	18.11	0.07	5.30	2.98	0.99	0.42	 0.07	0.03
Composition in w	t%									

Heat Treatments

Research Objective

How different heat treatments affect the HAZ liquation cracking susceptibility of cast Haynes[®] 282[®]?

Heat Treatments

Heat Treatments

Varestraint Testing

Parameters:

- Welding Speed = 1 mm/s
- Stroke rate = 10 mm/s
- Current = 70 A
- Arc =2 mm
- Ar gas flow = 15 l/min
- Radii: 60,100,150 (mm)

	As Cast	1120°C/4h	1160°C/4h	1190°C/4h
GS	1.6±0.4	1.5±0.2	1.6±0.3	1.6±0.2
ΗV	245±40	215±10	230±20	220±10
Vv%	1.5±0.2	0.9±0.1	0.7±0.1	0.5±0.1

	As Cast	1120°C/4h	1160°C/4h	1190°C/4h
GS	1.6±0.4	1.5±0.2	1.6±0.3	1.6±0.2
ΗV	245±40	215±10	230±20	220±10
Vv%	1.5±0.2	0.9±0.1	0.7±0.1	0.5±0.1

1190°C/4h

1.6±0.2

220±10

0.5±0.1

NanoSIMS Analysis

- Objective :
 - Primary : recorded B distribution in grain boundaries, variations among heat treatments
 - Secondary : Si and P imaging
- Conditions :
 - 1120,1160,1190°C/4h

NanoSIMS analysis at 1120°C

Carbon

Boron

NanoSIMS analysis at 1160°C

Carbon Boron 12C2 Cts 11B 16O2 Cts 1350 10 100 10 1 2 µm 0 0 1/1 1/1 Log [0...1350] Log [0...10] nb5_1160_spot2_07.im* nb5_1160_spot2_07.im*

NanoSIMS analysis at 1190°C

Hot Ductility - On Heating

Gleeble Parameters:

- Heating rate
 111 °C/s
- Peak temperature 1200 °C
- Stroke rate 55 mm/s
- Holding time at peak temperature 0.03 s
- Holding time at test temperature 0.03 s

Hot Ductility - On heating at 1150°C

Hot Ductility - On heating at 1200°C

Summary

- Ranking according to Varestraint weldability study:
 - 1190°C/4h higher cracking
 - 1120-1160°C/4h lower cracking sensivity
- NanoSIMS analysis:
 - B is found only in compound at 1120° and 1160° together with C
 - B segregates at the grain boundaries at 1190°
 - Complete dissolution of C-B particles and the segregation at the grain boundaries contributed to exacerbated HAZ cracking

Thank You!

Equilibrium vs Non-Eq. Segregation

- Occurs when a material is held at high temperature sufficiently long to permit appreciable diffusion of solute atoms from the matrix to the grain boundaries
- Decreases with increasing temperature

- Occurs during cooling from high temperature due to diffusion of vacancysolutes to vacancy sinks
- Increases with increasing temperature

NanoSIMS analysis at As cast

NanoSIMS analysis at As Cast

NanoSIMS analysis at 1160°C

NanoSIMS analysis at 1160°C

Hot Ductility - On heating at 1200°C

1120°C/4h

Mo-rich precipitates

	As Cast	1120°C/4h	1160°C/4h	1190°C/4h
Vv Mo(%)	0.14±0.2	0.31±0.2	0.13±0.2	00±00

31

On-Heating/On-Cooling f(B)

Introduction

Heat Treatments

Heat Treatments

Fig. 3. Simulated segregation profiles in austenite with 206 at. ppm boron after cooling at 1000, 100, 10 and 1°C/s. The starting temperature was 1250°C, the grain size 150 μ m and Set 2 (Table 1) parameter values were used.

Fig. 8. Calculated enrichment factors i.e. the boron concentration within 375 nm of the boundary divided by the bulk concentration as a function of cooling rate for starting temperatures 1250, 1050, and 850°C. Austenite with 206 at. ppm boron, grain size 150 μ m and using Set 1 (Table 1) parameter values.

Fig. 6. Simulated segregation profiles in austenite with 206, 17 or 5 at. ppm boron. The starting temperature was 1250°C, the cooling rate 100°C/s and the calculations were performed using Set 1 (Table 1) parameter values for a grain size of 150 μm.

Enrichment factor: grain size, starting temperature, cooling rate...

Karlsson, Non-equilibrium grain boundary segregation of B in austenitic stainless steel_III. Computer simulations, Acta metall. Vol. 36, 1988

Fig. 3. Simulated segregation profiles in austenite with 206 at. ppm boron after cooling at 1000, 100, 10 and 1°C/s. The starting temperature was 1250°C, the grain size 150 μ m and Set 2 (Table 1) parameter values were used.

Fig. 8. Calculated enrichment factors i.e. the boron concentration within 375 nm of the boundary divided by the bulk concentration as a function of cooling rate for starting temperatures 1250, 1050, and 850°C. Austenite with 206 at. ppm boron, grain size 150 μ m and using Set 1 (Table 1) parameter values.

Fig. 6. Simulated segregation profiles in austenite with 206, 17 or 5 at. ppm boron. The starting temperature was 1250°C, the cooling rate 100°C/s and the calculations were performed using Set 1 (Table 1) parameter values for a grain size of 150 μm.

Enrichment factor: grain size, starting temperature, cooling rate...

Karlsson, Non-equilibrium grain boundary segregation of B in austenitic stainless steel_III. Computer simulations, Acta metall. Vol. 36, 1988

BL-3

BM - x

BH - x

W - x

1130

1125

1120

1180

1216

1218

1202

1255

1110 (1177)

1085 (1176)

1090 (1165)

1135 {1220}

67

91

75

85

West, S.L. Phd Thesis, A study of weld heat-affected zone liquation in cast nickel-base superalloys,
The Ohio State University, 1991.

Stress relaxation through liquid

Outline

- Introduction
- Experimental
- Results & Discussion
- Summary
- Future Work

Non-equilibrium segregation

It is function of:

- Heat treatment temperature
- Cooling rate
- Concentration of solute atoms
- Binding energy between solute atoms and vacancies

Fig. 8. Calculated enrichment factors i.e. the boron concentration within 375 nm of the boundary divided by the bulk concentration as a function of cooling rate for starting temperatures 1250, 1050, and 850°C. Austenite with 206 at. ppm boron, grain size $150 \,\mu$ m and using Set 1 (Table 1) parameter values.

Karlsson, Non-equilibrium grain boundary segregation of B in austenitic stainless steel_III. Computer simulations, Acta metall. Vol. 36, 1988

Effect of B on weldability

- High tendency of B to segregate at the grain boundary vacancies
- Surface active element affecting the grain boundary wettability

Varestraint Testing

• Cracking increases

Gleeble Testing

- Reduces the NDT and NST
- BTR increases

NanoSIMS for B analysis

- SETTINGS :
 - Implantation 1017Cs+.cm-2 with D11 and ~ 180pA
 - ES4 AS3 EnSopen, mass resolving power is put at ~10000
 - mass table for (11B-), 11B12C-, 12C-, (12C2-), 28Si-, 31P-, 11B16O2-
 - Current measurement ~ 1pA with D12,
- SAMPLES :
 - As Cast, 1120,1160,1190°C/4h
- Objective :
 - Primary : recorded B distribution in grain boundaries, variations among heat treatment
 - Secondary : Si and P imaging