Airframe Sealing Automation using a Snake Robot

Luís Gonzaga Trabasso^{*1,2}, Doglas Negri^{*2}, Walter Antonio Kapp^{*2}, Magnus Engström^{*3}, Guilherme Sartori Natal,^{*1} and Kerstin Johansen^{*4}

*1 Department of Mechanical Engineering, Aeronautics Institute of Technology, SJCampos, SP/Brazil E-mail: gonzaga@ita.br, guilesn@gmail.com
*2 SENAI Institute of Innovation, Joinville, SC/Brazil
E-mail: luis.gonzaga@sc.senai.br, doglas.negri@sc.senai.br, walter.kapp@sc.senai.br
*3 SAAB AB, Aeronautics, Linköping, Sweden
E-mail: magnus.engstrom@saabgroup.com
*4 Department of Management and Engineering, Linköping University, Linköping, Sweden
E-mail: kerstin.johansen@liu.se

© SENAI-SC

Airframe Sealing Automation using a Snake Robot Introduction

General Objective: Feasibility analysis of a concept of a virtual snake-robot for automatic application of sealant in aeronautical structures.

- Design of the snake-robot
 - Evaluate the design in a virtual application for automated sealing in confined spaces;
 - Reach TRL4, which will be the basis for a continued project aiming for a physical demonstration at a higher TRL (TRL6).
- Reduce the size and weight of an earlier developed/demonstrated end-effector for automated sealing (focus on fillet sealing and fastener overcoating).
 - Evaluate the design in a virtual application for automated sealing in confined spaces;
 - Reach TRL4, which will be the basis for a continued project aiming for a physical demonstration at a higher TRL (TRL6).

Virtual *DMU* – Digital Mock-Up

Airframe Sealing Automation using a Snake Robot Scope of the project execution

DE INOVAÇÃO

SISTEMAS DE MANUFATURA

Airframe Sealing Automation using a Snake Robot Snake robot project - Kinematic model of the snake robot

Airframe Sealing Automation using a Snake Robot Snake robot project - Inverse kinematics

Airframe Sealing Automation using a Snake Robot Snake robot project - Trajectory strategy for inverse kinematics

Airframe Sealing Automation using a Snake Robot Snake robot project - Inverse kinematics verification

Airframe Sealing Automation using a Snake Robot Snake robot project - Inverse kinematics verification

Airframe Sealing Automation using a Snake Robot Snake robot project - Dimensioning and CAD model of the snake robot

© SENAI-SC

Airframe Sealing Automation using a Snake Robot

Snake robot project - Weight and dimensions reduction of the sealant dispenser 2K

© SENAI-SC

DE INOVAÇÃO

SISTEMAS DE MANUFATURA

Airframe Sealing Automation using a Snake Robot Results - Fillet sealing

© SENAI-SC

Airframe Sealing Automation using a Snake Robot Results - Fillet sealing

3D Picture

Airframe Sealing Automation using a Snake Robot Results - Fillet sealing (No Collision)

3D Picture

Airframe Sealing Automation using a Snake Robot Results - Overcoating of Fastener

Airframe Sealing Automation using a Snake Robot Results - Overcoating of Fastener

3D Picture

Airframe Sealing Automation using a Snake Robot Results - Overcoating of Fastener (No Collision)

3D Picture

- In terms of the technical feasibility of the project, the designed solution proved to be adequate for carrying out the proposed operation;
- The trajectories of application of sealant in fillets (union of two plates of the fuselage) and fasteners were tested by simulation, and were very well executed by the robot in a virtual environment, without collisions;
- For the economic feasibility, although the estimated cost of a unit snake robot is higher than the IIWA and the UR10e, the project is feasible when the snake robot is scaled up in production;
- An analysis for reducing the dimensions and mass in the sealant dispenser was carried out: cartridge case and the sealant application valve were assembled directly to the snake structure, yielding a 1.1 kg mass reduction of the sealant dispenser.

Airframe Sealing Automation using a Snake Robot

Luís Gonzaga Trabasso^{*1,2}, Doglas Negri^{*2}, Walter Antonio Kapp^{*2}, Magnus Engström^{*3}, Guilherme Sartori Natal,^{*1} and Kerstin Johansen^{*4}

*1 Department of Mechanical Engineering, Aeronautics Institute of Technology, SJCampos, SP/Brazil E-mail: gonzaga@ita.br, guilesn@gmail.com
*2 SENAI Institute of Innovation, Joinville, SC/Brazil
E-mail: luis.gonzaga@sc.senai.br, doglas.negri@sc.senai.br, walter.kapp@sc.senai.br
*3 SAAB AB, Aeronautics, Linköping, Sweden
E-mail: magnus.engstrom@saabgroup.com
*4 Department of Management and Engineering, Linköping University, Linköping, Sweden
E-mail: kerstin.johansen@liu.se

