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1. Introduction

Motivation

� Increasing use of remotely piloted aircraft (RPA) for civilian applications:
� Aerial photography, agricultural, coastguard, power lines inspection, etc.

Austin, 2010
� Availability of equipment (electronics, propulsion)
� Easy manufacturing
� Relatively low cost

RQ-11 Raven

AeroVironment, 2019.

TAI Gözcü

Hurriyet, 2019

AR4 Evolution

Tekever, 2019.
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1. Introduction

Conceptual design

Design phases:
� informational - requirements
� conceptual
� preliminary
� detailed
� (manufacturing, operation, )

Costs versus design time

Impact of
design change

Cost of
design change

Development time
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1. Introduction

Conceptual design

Design phases:
� informational - requirements
� conceptual
� preliminary
� detailed
� (manufacturing, operation, )

Costs versus design time

Impact of
design change

Cost of
design change

Development time

� Design strategy:
� Multidisciplinary Design Optimization (MDO) at conceptual level

� Di�culty: establish the architecture
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1. Introduction

Multidisciplinary design tool

Martins and Lambe (2013) classify the
MDO problems into:
� monolithic : a single optimisation
problem is solved,

� distributed: the same problem is
partitioned into multiple sub problems.

It is necessary to test multiple architectures
on a given MDO problem to determine
which one is most e�cient for each case.

Papageorgiou et al., 2017

Bryson et al., 2016
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1. Introduction

Multidisciplinary design tool

Sobieszczanski-Sobieski and Haftka (1996) identify three categories of MDO problems:

� those with two or three interactive disciplines, where a single analyst might acquire
all necessary knowledge.

� At analysis level, this can lead to the creation of a new discipline responsible for the
interaction between the involved disciplines, as aeroelasticity or thermoelasticity.

� those in which the multidisciplinary optimisation of the entire system is executed at
conceptual level by simple analysis tools.

� those that focus in organisation and computational challenges and develops special
techniques able of solving them.
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1. Introduction

Goals

Main goal

De�ne and implement a framework for conceptual design of a remotely piloted aircraft
(RPA)
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1. Introduction

Goals

Main goal

De�ne and implement a framework for conceptual design of a remotely piloted aircraft
(RPA)

Steps to achieve that:

Outline clearly the objectives of the conceptual design phase;

Organise a framework aiming to reach a viable concept that meets the mission
requirements;

Express conceptual design through a block diagram relating the various disciplines
addressed in aircraft design;

Apply an optimization method, de�ning the project variables, objective function
and constraints;
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2. Proposed Methodology

Tool applicability

Mini UAV category, which is capable of being hand-launched and operating at ranges up
to 30 km, according to Austin (2010);

Aircraft with conventional con�guration tractor or pusher with a payload bay with a
single tail boom leading to a conventional, cruciform or �T� tail con�guration without
landing gear and electric propulsion system.
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2. Proposed Methodology

N - diagram
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2. Proposed Methodology

Remotely piloted aircraft conceptual design

The unmanned aircraft design process di�er from the manned ones, once the information
source, historic regressions and design coe�cients are not available or are not reliable
Gundlach, 2012.

The wing and tail geometry are calculated according to Gudmundsson (2014);

Weight prediction is based on the volume calculation of each structural component and
multiplied by a material density;

Aerodynamics coe�cients are calculated using Roskam Class II methodology Roskam,
1985;

Performance estimates are found from Traub (2011) formulation;

Stability derivatives are predicted from empirical data presented in Roskam (1983);

Flight dynamics are analysed based on Cook (2011) methodology.
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2. Proposed Methodology

De�nition of the optimization problem

The optimization problem is

min f (x,p) = Mtot

x = [AR S λ ΛLE
xrw

lfus
λfus ARHT ARVT

lHT

c̄
]T ,

p = [H V VHT VVT Volfus CBat ρMat MPL ...]T

xi,L.B. ≤ xi ≤ xi,U.B., i = 1,2, ...9
s.t.

Cmα
< 0,

Cnβ
> 0,

12.5% < SM < 17.5%,
λAlp < 0 e λAlg < 0.

Design parameters:

Discipline n vars

Tail geometry 8

Fuselage 2

Aerodynamics 6

Propulsion 6

Flight control 7

Materials 2

Payload 1

Total 32
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2. Proposed Methodology
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2. Proposed Methodology

Particle Swarm Optimization (PSO)

Collective behaviour of natural systems Yang, 2010.

The position vector xi and the velocity υi for the particle i are utilised to determine the new
velocity vector as

υi
t+1 = υi

t +αε1 � [b∗−xi
t]+βε2 � [x∗i −xi

t], (1)

where ε1 and ε2 are two random vectors that vary between 0 and 1 and the parameters α e β

are acceleration constants.

The initial velocity for the particle may be taken as zero υi
t=0 = 0.

Then, the new position is updated as

xi
t+1 = xi

t +υi
t+1. (2)
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3. Numerical Studies

Reference model

Commercial RPA designed exclusively for research.

Spy Owl 200.

b 2.01 m
MTOW 6.5 kg
Endurance 2 hours
H 75-1500 m

AGL
Mpayload 2,7 kg
Vcruise 14-22 m/s

Adapted from Europe, 2019.
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3. Numerical Studies

Design requirements

The design requirements:
� the aircraft should be easily transported between operation sites;

� the aircraft should be light enough to be hand-launched;

� the aircraft should be recovered from a belly landing;

� the aircraft should be remotely piloted or to �y autonomously with interference of a human
operator;

� the aircraft should transmit the �ight data real-time for ground system.

These requirements must be interpreted and transformed into constraints.
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3. Numerical Studies

Mission and functional requirements

The RPA mission is to carry a research payload with a determined mass utilising electric
propulsion.
The functional requirements are:

Maximum mass of 6.5 kg;

Maximum span of 2 m;

Cruise speed of 20 m/s;

Hand-launched by the operator;

Recovered by belly landing;

Operating altitude of 100 m.
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3. Numerical Studies

Design variables limits

Lower and upper bounds of the design
variables of the optimization problem in

study.
No Variable xi,L.B. xi,U.B. Unit
1 AR 6 11 [-]
2 S 0.05 0.5 [m2]
3 λ 0.3 1 [-]
4 ΛLE 0 10 [deg]
5 xrw/lfus 0 1 [-]
6 λfus 3 6 [-]
7 ARHT 3 5 [-]
8 ARVT 1 2.5 [-]
9 lHT/c̄ 3 6 [-]
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3. Numerical Studies

Minimization of aircraft structural mass

� Evaluate 10 complete runs
� Same input data
� Choose best run
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3. Numerical Studies

Final concept

� Objective function (total mass)
achieved convergence level at 1400
iterations

� Final concept at 4150 iterations

� Convergence: no better value after
1000 iterations
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3. Numerical Studies

Final concept

� Objective function (total mass)
achieved convergence level at 1400
iterations

� Final concept at 4150 iterations

� Convergence: no better value after
1000 iterations

Aircraft con�guration at iteration 1.
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3. Numerical Studies

Final concept

� Objective function (total mass)
achieved convergence level at 1400
iterations

� Final concept at 4150 iterations

� Convergence: no better value after
1000 iterations

Aircraft con�guration at iteration 2000.
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3. Numerical Studies

Final concept

� Objective function (total mass)
achieved convergence level at 1400
iterations

� Final concept at 4150 iterations

� Convergence: no better value after
1000 iterations

Aircraft �nal con�guration at iteration 4150.

Presenter: Carlos E. de Souza FT 2019 - Stockholm - Sweden October 9th , 2019 19 / 26



3. Numerical Studies

Final concept - design variables

Optimized design variables :
Variable xgbest Unit
AR 9.67
S 0.17 [m2]
λ 0.77
ΛLE 8.47 [deg]
xrw/lfus 0.13
λfus 3
ARHT 3.69
ARVT 2.17
lHT/c̄ 3.87
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3. Numerical Studies

Final concept - design variables

Optimized design variables :
Variable xgbest Unit
AR 9.67
S 0.17 [m2]
λ 0.77
ΛLE 8.47 [deg]
xrw/lfus 0.13
λfus 3
ARHT 3.69
ARVT 2.17
lHT/c̄ 3.87

Design with 5 ≤ λfus7
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3. Numerical Studies

Final concept - output data

Parameter Value Unit
Mass properties

Mtot 1.71 [kg]
Aerodynamics

iw 3.23 [deg]
iHT 1.31 [deg]
CD0 0.055
k 0.041

Parameter Value Unit
Performance

E 36 [min]
R 44 [km]
Stability

Cmα
-0.584 [1/rad]

Cnβ
0.0 [1/rad]

Clβ -0.079 [1/rad]
Cyβ

-0.412 [1/rad]
SM 12.5 [%]
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4. Concluding Remarks

� Diverse aeronautical engineering disciplines (aerodynamics, stability, �ight dynamics,
etc.) are coupled into a single driver code that handles all design information;

� Considering constraints of RPA missions using known general aviation
methodologies is still a challenging task;

� The process requires experience to establish constraints and bounds

� This is an ongoing development work. The disciplines analyses are implemented in
Python language in form of independent packages, called by the main code.

� New disciplines can be easily added or the ones already present can be improved.

� The same approach is applicable to the optimization method, once the RPA design
code is also a module to be called in the routine.
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4. Concluding Remarks

A study for a MDO process applied to conceptual design of a remotely
piloted aircraft

M. L. C. Gatelli, C. E. de Souza, M. D. F. Awruch,
marialuizagatelli@gmail, carlos.souza@ufsm.br, marcos.awruch@ufsm.br
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