LINKÖPING UNIVERSITY

Aerospace technology Congress - FT 2019

Assessment of Pilot-Aircraft Interface as a Conceptual Design Tool

Diego H. Arjoni

Emilia Villani

Manuel Rodríguez

Petter Krus

October 08, 2019

Where I come from...

The city of São José dos Campos in Brazil

Contextualization

Introduction of unstable aircraft configuration with dynamic trim canard

ICAS

31st Congress of the International Council

of the Aeronautical Sciences

Objective

Understand pilot-aircraft interaction from early stages of design

How does performance vary among different pilots?

How is the pilot's behaviour and performance affected by HMI?

Can we obtain a pilot model for design optimization?

Objective

Understand pilot-aircraft interaction from early stages of design

Design of Experiment

TASK: Track the pitch reference

3. NORMAL FLIGHT Scenario

4. DISTURBANCE Scenario

Experiment Factors - HMI

Experiment Procedure

Performance Metric:

$$Error = \frac{\sum (Pitch - SetPoint)^2}{Data_length}$$

- ANOVA Analysis of Variance:
 - Approach A Single data set
 - Approach B One data set per scenario

ANOVA – Approach A: 1 data set

ANOVA – Approach A: 1 data set

All Flights				
Interface Influence	0,000118			
Flight Influence	1,1E-11			
Pilot Influence	8,38E-05			
Pilot x Interface	0,090645			
Pilot x Flight	0,450191			
Interface x Flight	0,045131			
Interface x Flight x Pilot	0,881769			
Outliers	#2, #18, #30			

All three factors affect the mean error, i.e., the pilots performance.

ANOVA – Approach A: 1 data set

Normal Q-Q Plot

Data follows normal distribution

All Flights			
Shapiro-Wilk	0,05133		
Bartlett for Pilot	0,7193		
Bartlett for Flight	0,0043		
Bartlett for Interface	0,1241		

Variances are not homogenous

ANOVA – Approach B: 4 datasets

ANOVA – Approach B: 4 datasets

Stimulus	Interface Influence	Pilot Influence	Interaction influence	Outliers
Pitch-Up	0,0483	0,3347	0,4583	#2, #12
Pitch-Down	0,0313	0,0176	0,2748	
Normal	0,1672	0,0012	0,033	#6
Disturbance Flight	0,0149	0,1146	0,595	

Interface is the most relevant factor

Stimulus	Shapiro- Wilk	Bartlett for Pilot	Bartlett for Interface
Pitch-Up	0,9495	0,2134	0,3454
Pitch-Down	0,128	0,8563	0,3942
Normal	0,516	0,0565	0,0799
Disturbance Flight	0,1679	0,6836	0,8444

Data follow normal distribution and are homogenous

Eye-Tracker Analysis

Heat map of attention – Numeric Interface

Eye-Tracker Analysis

Heat map of attention – Graphic

Pilot Model

Precision Model

Pilot Model

Precision Model

$$Y_p(s) = K_p \cdot e^{-\tau s} \cdot \frac{T_L s + 1}{T_I s + 1} \cdot \frac{1}{T_N s + 1} \cdot \frac{1}{\frac{1}{\omega_N^2} s^2 + \frac{2\xi_N}{\omega_N} s + 1}$$

Adapt to rate or speed control $(T_L = T_I)$
$$Y_p(s) = K_p \cdot e^{-\tau s} \cdot \frac{1}{T_N s + 1} \cdot \frac{1}{\frac{1}{\omega_N^2} s^2 + \frac{2\xi_N}{\omega_N} s + 1}$$

Insert trim constant

$$Y_p(s) = K_p \cdot e^{-\tau s} \cdot \frac{1}{T_N s + 1} \cdot \frac{1}{\frac{1}{\omega_N^2} s^2 + \frac{2\xi_N}{\omega_N} s + 1} + C$$

- Genetic Algorithm limited range of parameters:
 - K_p : Range for pilot gain [0.0001; 1]
 - τ : Range for pilot delay [0.001; 1]
 - T_N : Range for time constant of neuromuscular system [0.001; 1]
 - ω_N : Undamped frequency for the neuromuscular system stabilized on 25
 - ξ_N : Damping ratio for the neuromuscular system Range [0.1; 1]
 - C: Trim Constant Range [-1; 1]

Pilot Model Optimization

- Cost function:
 - P_1 : Inceptor rate factor (0.99)
 - P_2 : Aircraft rate factor (0.01)
 - *E_I*: Inceptor error (real command minus modelled command)
 - E_A : Aircraft pitch error (real pitch minus modelled pitch)
 - □ *n*: Length of the dataset

$$F = P_1 \cdot \sqrt{\frac{\sum E_I^2}{n}} + P_2 \cdot \sqrt{\frac{\sum E_A^2}{n}}$$

Pilot Model Optimization

Pilot Model Optimization

Model of
$$Y_p(s) = 0.0288 \cdot e^{-0.9957s} \cdot \frac{1}{0.3224s + 1} \cdot \frac{1}{\frac{1}{25^2}s^2 + \frac{2 \cdot 0.9448}{25}s + 1}$$

Pilot 2

How does performance vary among different pilots?

How is the pilot's behaviour and performance affected by HMI?

Can we obtain a pilot model for design optimization?

Conclusions

Performance is affected by pilot, manoeuvre and HMI.

Different models for different pilots.

Future work

Extend experiment to a large pilot population.

Development of statistical pilot models.

LINKÖPING UNIVERSITY

Thank You

Diego H. Arjoni

arjoni@ita.br

Emília Villani

evillani@ita.br

Manuel Rodríguez

manuelrd@ita.br

Petter Krus

petter.krus@liu.se