Aerospace Technology Congress 2019 Swedish Society of Aeronautics and Astronautics (FTF)

FAULT DETECTION AND ISOLATION BASED ON BOND GRAPH MODELS: APPLICATION TO AN ELECTROMECHANICAL ACTUATOR

Gabriel S. Sobral and Luiz C. S. Góes

Department of Mechanical Engineering Instituto Tecnológico de Aeronáutica (ITA) São José dos Campos, SP/Brazil

8-9 October 2019, Stockholm, Sweden

AGENDA

- 01. Introduction Research Motivation and Objectives
- 02. Fault Detection and Isolation
- 03. Electromechanical Actuator Model
- 04. Diagnostic Bond Graph Model
- 05. Simulation and Results Conclusions

CONVENTIONAL AIRCRAFT POWER DISTRIBUTION

ELECTROMECHANICAL ACTUATOR (EMA)

Source: QIAO et al., 2017.

RESEARCH MOTIVATION

- Industry trend towards power-bywire actuators with evolution of the More Electric Aircraft concept
- Lack of accumulated knowledge and experience regarding EMA reliability and the risk of failures

RESEARCH MOTIVATION

RESEARCH OBJECTIVES

- Industry trend towards power-bywire actuators with evolution of the More Electric Aircraft concept
- Lack of accumulated knowledge and experience regarding EMA reliability and the risk of failures

- Study and implementation of a quantitative model-based fault detection and isolation methodology based on bond graph
- Application to an EMA model

FAULT DETECTION AND ISOLATION

FAULT DEFINITION

"<u>Fault</u> is generally defined as a departure from an acceptable range of an observed variable or a calculated parameter associated with a process." (VENKATASUBRAMANIAN et al., 2003)

FAULT DETECTION AND ISOLATION (FDI)

Fault detection: to determine if the system behavior has departed from the acceptable operation, raising a fault alarm in case of unacceptable behavior.

Fault isolation: to reduce the number of fault candidates, using one or more decision procedures to isolate the component responsible for the faulty behavior.

Observers Quantitative Parity Space EKF Model-Based Digraphs Causal Models Fault Trees Qualitative Physics Qualitative Structural FDI Abstraction Methods Hierarchy Functional PCA / PLS Statistical Classifiers Quantitative Neural Networks History-Based EKF: Extended Kalman Filter Expert Systems QTA: Qualitative Trend Analysis PCA/PLS: Principal Components Analysis/Partial Least-Squares Qualitative QTA

FAULT DETECTION AND ISOLATION (FDI)

Source: adapted from (VENKATASUBRAMANIAN et al., 2003)

RESIDUAL SPACE MODEL-BASED FDI

RESIDUAL SPACE MODEL-BASED FDI

ELECTROMECHANICAL ACTUATOR MODEL

DIRECT DRIVE EMA

Source: FU et al., 2018.

DIRECT DRIVE EMA

DIRECT DRIVE EMA - WORD BOND GRAPH

EM: Electric Motor MPT: Mechanical Power Transmission

EMA BEHAVIOURAL MODEL

EMA FAILURE MODES

Short-circuit Open-circuit

EM stator winding insulation deterioration, wire chafing, permanent winding failure.

Fault injection:

EM stator winding resistance

Backlash

MPT Excessive wear leading to backlash, or lostmotion.

Fault injection:

MPT compliance model

Jamming

MPT Increased friction, structural failure.

Fault injection:

MPT viscous friction coefficient

Free-play

Load coupling broken mechanical linkage.

Fault injection:

Load coupling contact force

DIAGNOSTIC BOND GRAPH MODEL

DIAGNOSTIC BOND GRAPH

EMA DIAGNOSTIC BOND GRAPH

residual virtual sensors or **residual sinks**

XI

Subsystem	Component	res_1	res_2	res_3	res_4	D	Ι
EM electrical part	U_s	1	0	0	0	1	0
	L_w	1	0	0	0	1	0
	R_w	1	0	0	0	1	0
EM mechanical part	K_m	1	1	0	0	1	0
	J_m	0	1	0	0	1	0
	R_{fm}	0	1	0	0	1	0
MPT roller-screw	p	0	1	1	0	1	0
	R_{cr}	0	1	1	0	1	0
	K_{cr}	0	1	1	0	1	0
	M_r	0	0	1	0	1	0
	R_{fr}	0	0	1	0	1	0
Load coupling	R_{cL}	0	0	1	1	1	0
	K_{cL}	0	0	1	1	1	0
Load	M_L	0	0	0	1	1	0
	F_{aer}	0	0	0	1	1	0
Sensors	i_m	1	1	0	0	1	0
	ω_m	1	1	1	0	1	1
	v_r	0	1	1	0	1	0
	v_L	0	0	1	1	1	0

- Analysis of the causal paths leading to each residual detector
- Detectability index (D) of a component is set to 1 if at least one residual is sensitive to it
- Isolability index (I) is set to 1 when the component's fault signature is different from fault signatures of all other components

SIMULATION AND RESULTS

20-SIM BG MODEL IMPLEMENTATION

NORMAL OPERATION

SHORT-CIRCUIT

SHORT-CIRCUIT

Subsystem	Component	res_1	res_2	res_3	res_4	D	I
EM electrical part	U_s	1	0	0	0	1	0
	L_w	1	0	0	0	1	0
	R_w	1	0	0	0	1	0
EM mechanical part	K_m	1	1	0	0	1	0
	J_m	0	1	0	0	1	0
	R_{fm}	0	1	0	0	1	0
MPT roller-screw	p	0	1	1	0	1	0
	R_{cr}	0	1	1	0	1	0
	K_{cr}	0	1	1	0	1	0
	M_r	0	0	1	0	1	0
	R_{fr}	0	0	1	0	1	0
Load coupling	R_{cL}	0	0	1	1	1	0
	K_{cL}	0	0	1	1	1	0
Load	M_L	0	0	0	1	1	0
G	F_{aer}	0	0	0	1	1	0
Sensors	i_m	1	1	0	0	1	0
	ω_m	1	1	1	0	1	1
	v_r	0	1	1	0	1	0
	v_L	0	0	1	1	1	0

BACKLASH

BACKLASH

Subsystem	Component	res_1	res_2	res_3	res_4	D	Ι
EM electrical part	U_s	1	0	0	0	1	0
	L_w	1	0	0	0	1	0
	R_w	1	0	0	0	1	0
EM mechanical part	K_m	1	1	0	0	1	0
	J_m	0	1	0	0	1	0
	R_{fm}	0	1	0	0	1	0
MPT roller-screw	p	0	1	1	0	1	0
	R_{cr}	0	1	1	0	1	0
	K_{cr}	0	1	1	0	1	0
	M_r	0	0	1	0	1	0
	R_{fr}	0	0	1	0	1	0
Load coupling	R_{cL}	0	0	1	1	1	0
	K_{cL}	0	0	1	1	1	0
Load	M_L	0	0	0	1	1	0
	F_{aer}	0	0	0	1	1	0
Sensors	i_m	1	1	0	0	1	0
	ω_m	1	1	1	0	1	1
	v_r	0	1	1	0	1	0
	v_L	0	0	1	1	1	0

FDI RESULTS SUMMARY

Fault	Fault Injection	Coherence Vector	Fault Candidates
Normal operation	-	[0, 0, 0, 0]	-
Open-circuit	R_w	[1, 0, 0, 0]	U_s, L_w, R_w
Short-circuit	R_w	[1, 0, 0, 0]	U_s, L_w, R_w
Backlash	R_{cr}, K_{cr}	[0, 1, 1, 0]	p, R_{cr}, K_{cr}, v_r
Jamming	R_{fr}	[0, 0, 1, 0]	M_r, R_{fr}
Mechanical disconnection	R_{cL}, K_{cL}	[0, 0, 1, 1]	R_{cL}, K_{cL}, v_L

CONCLUSIONS

The Diagnostic Bond Graph approach was proven as a powerful tool, suitable for the implementation of FDI on complex multidisciplinary systems, such as the electromechanical actuator.

THANK YOU

Gabriel Sobral gasan.sobral@gmail.com

BIBLIOGRAPHY

BALABAN, E.; SAXENA, A.; BANSAL, P.; GOEBEL, K. F.; STOELTING, P.; CURRAN, S. A diagnostic approach for electro-mechanical actuators in aerospace systems. In: IEEE AEROSPACE CONFERENCE, 2009, Big Sky. **Proceedings [...]**. Piscataway: IEEE, 2009. p. 1-13.

BORUTZKY, W. **Bond graph methodology:** development and analysis of multidisciplinary dynamic system models. London: Springer, 2010. 662p.

FU, J.; MARÉ, J. C.; YU, L.; FU, Y. Multi-level virtual prototyping of electromechanical actuation system for more electric aircraft. **Chinese Journal of Aeronautics**, v. 31, n. 5, p. 892-913, 2018.

QIAO, G.; LIU, G.; SHI, Z.; WANG, Y.; MA, S.; LIM, T. C. A review of electromechanical actuators for More/All Electric aircraft systems. **Proceedings of the Institution of Mechanical Engineers, Part C:** Journal of Mechanical Engineering Science, 2017.

SAMANTARAY, A. K.; BOUAMAMA, B. O. **Model-based process supervision:** a bond graph approach. London: Springer, 2008. 471 p.

EMA MODEL - ELECTRIC MOTOR

EMA MODEL - MECHANICAL POWER TRANSMISSION

EMA MODEL - LOAD COUPLING

Subsystem	Component	res_1	res_2	res_3	res_4	D	Ι
EM electrical part	U_s	1	0	0	0	1	0
	L_w	1	0	0	0	1	0
	R_w	1	0	0	0	1	0
EM mechanical part	K_m	1	1	0	0	1	0
	J_m	0	1	0	0	1	0
	R_{fm}	0	1	0	0	1	0
MPT roller-screw	p	0	1	1	0	1	0
	R_{cr}	0	1	1	0	1	0
	K_{cr}	0	1	1	0	1	0
	M_r	0	0	1	0	1	0
	R_{fr}	0	0	1	0	1	0
Load coupling	R_{cL}	0	0	1	1	1	0
	K_{cL}	0	0	1	1	1	0
Load	M_L	0	0	0	1	1	0
	F_{aer}	0	0	0	1	1	0
Sensors	i_m	1	1	0	0	1	0
	ω_m	1	1	1	0	1	1
	v_r	0	1	1	0	1	0
	v_L	0	0	1	1	1	0

- Analysis of the causal paths leading to each residual detector
- Detectability index (D) of a component is set to 1 if at least one residual is sensitive to it
- Isolability index (I) is set to 1 when the component's fault signature is different from fault signatures of all other components

EMA FAULT SIGNATURE MATRIX

Subsystem	Component	res_1	res_2	res_3	res_4	D	Ι
EM electrical part	U_s	1	0	0	0	1	0
	L_w	1	0	0	0	1	0
	R_w	1	0	0	0	1	0
EM mechanical part	K_m	1	1	0	0	1	0
	J_m	0	1	0	0	1	0
	R_{fm}	0	1	0	0	1	0
MPT roller-screw	p	0	1	1	0	1	0
	R_{cr}	0	1	1	0	1	0
	K_{cr}	0	1	1	0	1	0
	M_r	0	0	1	0	1	0
	R_{fr}	0	0	1	0	1	0
Load coupling	R_{cL}	0	0	1	1	1	0
	K_{cL}	0	0	1	1	1	0
Load	M_L	0	0	0	1	1	0
	F_{aer}	0	0	0	1	1	0
Sensors	i_m	1	1	0	0	1	0
	ω_m	1	1	1	0	1	1
	v_r	0	1	1	0	1	0
	v_L	0	0	1	1	1	0

- Analysis of the causal paths leading to each residual detector
- Detectability index (D) of a component is set to 1 if at least one residual is sensitive to it
- Isolability index (I) is set to 1 when the component's fault signature is different from fault signatures of all other components

Subsystem	Component	res_1	res_2	res_3	res_4	D	Ι
EM electrical part	U_s	1	0	0	0	1	0
	L_w	1	0	0	0	1	0
	R_w	1	0	0	0	1	0
EM mechanical part	K_m	1	1	0	0	1	0
	J_m	0	1	0	0	1	0
	R_{fm}	0	1	0	0	1	0
MPT roller-screw	p	0	1	1	0	1	0
	R_{cr}	0	1	1	0	1	0
	K_{cr}	0	1	1	0	1	0
	M_r	0	0	1	0	1	0
	R_{fr}	0	0	1	0	1	0
Load coupling	R_{cL}	0	0	1	1	1	0
	K_{cL}	0	0	1	1	1	0
Load	M_L	0	0	0	1	1	0
	F_{aer}	0	0	0	1	1	0
Sensors	i_m	1	1	0	0	1	0
	ω_m	1	1	1	0	1	1
	v_r	0	1	1	0	1	0
	v_L	0	0	1	1	1	0

- Analysis of the causal paths leading to each residual detector
- Detectability index (D) of a component is set to 1 if at least one residual is sensitive to it
- Isolability index (I) is set to 1 when the component's fault signature is different from fault signatures of all other components

OPEN-CIRCUIT

OPEN-CIRCUIT

Subsystem	Component	res_1	res_2	res_3	res_4	D	Ι
EM electrical part	U_s	1	0	0	0	1	0
	L_w	1	0	0	0	1	0
	R_w	1	0	0	0	1	0
EM mechanical part	K_m	1	1	0	0	1	0
	J_m	0	1	0	0	1	0
	R_{fm}	0	1	0	0	1	0
MPT roller-screw	p	0	1	1	0	1	0
	R_{cr}	0	1	1	0	1	0
	K_{cr}	0	1	1	0	1	0
	M_r	0	0	1	0	1	0
	R_{fr}	0	0	1	0	1	0
Load coupling	R_{cL}	0	0	1	1	1	0
	K_{cL}	0	0	1	1	1	0
Load	M_L	0	0	0	1	1	0
	F_{aer}	0	0	0	1	1	0
Sensors	i_m	1	1	0	0	1	0
	ω_m	1	1	1	0	1	1
	v_r	0	1	1	0	1	0
	v_L	0	0	1	1	1	0

200 -

FREE-PLAY

Subsystem	Component	res_1	res_2	res_3	res_4	D	Ι	1
EM electrical part	U_s	1	0	0	0	1	0	£ 0
	L_w	1	0	0	0	1	0	.1
	R_w	1	0	0	0	1	0	0 0.5 1 1.5 2 2.5 3 3.5 4 4.
EM mechanical part	K_m	1	1	0	0	1	0	50
	J_m	0	1	0	0	1	0	30
	R_{fm}	0	1	0	0	1	0	E om monther more thank
MPT roller-screw	p	0	1	1	0	1	0	
	R_{cr}	0	1	1	0	1	0	-50
	K_{cr}	0	1	1	0	1	0	0 0.5 1 1.5 2 2.5 3 3.5 4 4.
	M_r	0	0	1	0	1	0	6 × 10
	R_{fr}	0	0	1	0	1	0	4 -
Load coupling	R_{cL}	0	0	1	1	1	0	^۳ 2 -
	K_{cL}	0	0	1	1	1	0	0
Load	M_L	0	0	0	1	1	0	-2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -
	F_{aer}	0	0	0	1	1	0	2 × 10 ⁹
Sensors	i_m	1	1	0	0	1	0	
	ω_m	1	1	1	0	1	1	
	v_r	0	1	1	0	1	0	£ -2
	v_L	0	0	1	1	1	0	4

JAMMING

JAMMING

Subsystem	Component	res_1	res_2	res_3	res_4	D	Ι	1
EM electrical part	U_s	1	0	0	0	1	0	
	L_w	1	0	0	0	1	0	.1
	R_w	1	0	0	0	1	0	0 0.5 1 1.5 2 2.5 3 3.5 4 4
EM mechanical part	K_m	1	1	0	0	1	0	50
	J_m	0	1	0	0	1	0	
	R_{fm}	0	1	0	0	1	0	E o manual and the second seco
MPT roller-screw	p	0	1	1	0	1	0	
	R_{cr}	0	1	1	0	1	0	-50
	K_{cr}	0	1	1	0	1	0	0 0.5 1 1.5 2 2.5 3 3.5 4 4
	M_r	0	0	1	0	1	0	4
	R_{fr}	0	0	1	0	1	0	2
Load coupling	R_{cL}	0	0	1	1	1	0	E 0
	K_{cL}	0	0	1	1	1	0	-2
Load	M_L	0	0	0	1	1	0	4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	F_{aer}	0	0	0	1	1	0	2 ×10 ⁵
Sensors	i_m	1	1	0	0	1	0	2
	ω_m	1	1	1	0	1	1	
	v_r	0	1	1	0	1	0	
	v_L	0	0	1	1	1	0	
								-2_{0}^{-2} 0 0.5 1 1.5 2 2.5 3 3.5 4 4 time (s)

FUTURE RESEARCH

- 1. Refinement of the EMA model, including PDE and actuator control;
- 2. Analysis of the closed loop response, and its impacts over the response to failure modes;
- 3. Robust FDI and sensitivity analysis of the residuals in the presence of parameter uncertainties;
- 4. Evaluate the inclusion of more sensors in order to improve faults isolability;
- 5. Bicausal Bond Graph (BBG) models for analysis and improvement of sensor placement for better isolability;
- 6. Multiple-fault scenarios, applying multiple-fault isolation techniques;
- 7. Fault Tolerant Control (FTC) techniques for fault accommodation / passivation;
- 8. DBG online simulation, with inputs from a real system.

MORE ELECTRIC AIRCRAFT

MEA

EMA MODEL PARAMETERS

Parameter	Value	Unity	Description
J_m	0.001279	${\rm kg}{\rm m}^2{\rm rad}^{-1}$	EM rotor inertia
K_{cL}	3×10^8	${ m N}{ m m}^{-1}$	Load compliance stiffness
K_{cr}	3×10^8	${ m N}{ m m}^{-1}$	Roller-Screw compliance stiffness
L_w	3	mH	EM stator winding inductance
M_L	600	kg	Load reflected mass
M_r	1	kg	Roller-screw rod mass
p	2.54	mm	Lead of roller-screw
R_{cL}	1×10^4	${ m Nsm^{-1}}$	Load compliance damping
R_{cr}	1×10^4	${ m Nsm^{-1}}$	Roller-screw compliance damping
R_{fm}	$1 imes 10^{-3}$	${ m Nsm^{-1}}$	EM friction coefficient
R_{fr}	1×10^4	${ m Nsm^{-1}}$	Roller-screw friction coefficient
K_m	0.46	$\mathrm{NmA^{-1}}$	EM torque constant
R_w	1.5	Ω	EM stator winding resistance
U_s	115	V	Bus voltage

TABLE $6.1-{\rm EMA}$ model parameters.

Source: (EXLAR, 2018; FU et al., 2016; WANG; MARÉ, 2014).

CAUSAL PATH ANALYSIS

Causal paths leading to residual r1:

1. $\mathbf{U_s} \rightarrow e_1 \rightarrow e_{23} \rightarrow e_{24} \rightarrow \mathbf{res_1}$ 2. $\mathbf{i_m} \rightarrow f_{25} \rightarrow f_{23} \rightarrow f_2 \rightarrow \mathbf{L_w} \rightarrow e_2 \rightarrow e_{23} \rightarrow e_{24} \rightarrow \mathbf{res_1}$ 3. $\omega_{\mathbf{m}} \rightarrow f_{28} \rightarrow f_{26} \rightarrow f_5 \rightarrow \mathbf{K_m} \rightarrow e_4 \rightarrow e_{23} \rightarrow e_{24} \rightarrow \mathbf{res_1}$ 4. $\mathbf{i_m} \rightarrow f_{25} \rightarrow f_{23} \rightarrow f_3 \rightarrow \mathbf{R_w} \rightarrow e_3 \rightarrow e_{23} \rightarrow e_{24} \rightarrow \mathbf{res_1}$

 $\operatorname{res}_1(U_s, i_m, L_w, \omega_m, K_m, R_w)$

FIGURE 5.9 – EMA diagnostic bond graph model.

BACKLASH MODEL

Pure spring effect: using $x_0 = 0$, the elastic force F_e is purely proportional to the relative displacement x_e and is given by equation 5.10

$$F_e = k_e x_e \tag{5.10}$$

Backlash effect: using $x_0 > 0$, configures a dead zone ($F_e = 0$) of $2x_0$ and the elastic force F_e is given by equation 5.11

$$F_e = \begin{cases} k_e(x_e - x_0) & x_e > x_0 \\ 0 & |x_e| \le x_0 \\ k_e(x_e + x_0) & x_e < -x_0 \end{cases}$$
(5.11)

Preload effect: using $x_0 < 0$, configures a preload force $|F_0| = k_e |x_0|$ and the elastic force F_e is given by equation 5.12

$$F_e = \begin{cases} k_e(x_e - x_0) & x_e > -x_0 \\ 2k_e x_e & |x_e| \le |x_0| \\ k_e(x_e + x_0) & x_e < x_0 \end{cases}$$

(5.12) FIGURE 5.7 – Compliance model with backlash and preload effects (FU et al., 2016).

EXPERIMENTAL THRESHOLDS

TABLE 6.2 - Experimental residual thresholds, using 0.5 s moving average.

Residual (r_i)	Threshold (ε_i)
r_1	1
r_2	50
r_3	1.5e5
r_4	1.5e5

NOISE MODEL

FIGURE 6.9 - 20-sim implementation of the noise model.