Model-based Sensor Fault Detection for an Autonomous Solar-powered Aircraft

Paulo Padrão, Liu Hsu Michael Vilzmann, Konstantin Kondak

Electrical Engineering Department - UFRJ Robotics and Mechatronics Center - DLR

October, 2019

Universidade Federal do Rio de Janeiro

COPPE UFRJ

CONTENTS

Introduction

Aircraft Modeling

Proposed Fault Detection Approach

Results and Discussion

Conclusion and Future Steps

Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia

Paulo Padrão

Model-based Sensor Fault Detection in an Autonomous Solar-powered Aircraft

PEE-UFRJ

INTRODUCTION

- Fault detection and diagnosis (FDD) is a significant task in the automatic control of complex systems;
- Safety-critical systems require fault detection frameworks to guarantee reliability and availability;
- Applications: from commercial aircrafts to vibration monitoring of mechanical systems;

Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia

Paulo Padrão

MOTIVATION

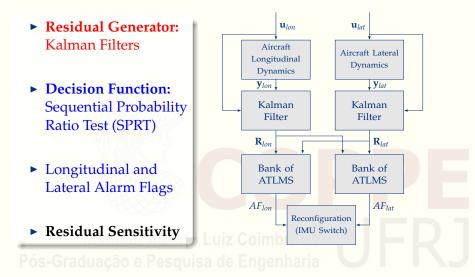
Main Motivation

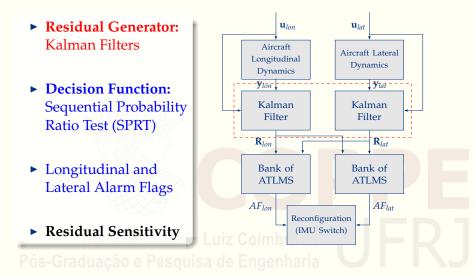
 Development of a suitable IMU fault detection, diagnosis, and reconfiguration (FDD) approach to be further applied to the Elektra 2 Solar Aircraft;

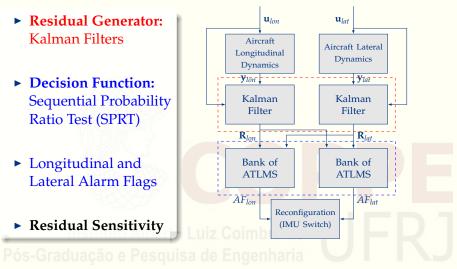
Elektra 2 Solar: Autonomous Solar-powered aircraft

Paulo Padrão

PEE-UFRJ


MOTIVATION


Elektra 2 Solar Specs


- ► Electric Motor: 23 *kW*
- Propeller speed for cruise: 1250 rpm
- Wingspan: 24.8 m
- Wing Area: 27 m^2
- Solar Cells: $26.5 m^2$
- ► Maximum Weight: 400 kg
- Maximum Payload: 120 kg
- Max. glide ratio: \approx 1:40

Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia

Paulo Padrão

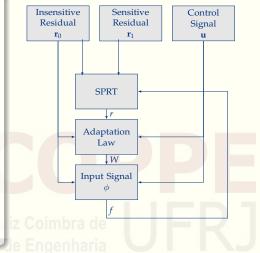
Paulo Padrão

PEE-UFRJ

DECOUPLED AIRCRAFT DYNAMICS

$$\begin{bmatrix} \dot{\mathbf{x}}_{lon} \\ \dot{\mathbf{x}}_{lat} \end{bmatrix} = \begin{bmatrix} \mathbf{A}_{lon} & 0 \\ 0 & \mathbf{A}_{lat} \end{bmatrix} \begin{bmatrix} \mathbf{x}_{lon} \\ \mathbf{x}_{lat} \end{bmatrix} + \begin{bmatrix} \mathbf{B}_{lon} & 0 \\ 0 & \mathbf{B}_{lat} \end{bmatrix} \begin{bmatrix} \mathbf{u}_{lon} \\ \mathbf{u}_{lat} \end{bmatrix}$$
(1)
$$\begin{bmatrix} \mathbf{y}_{lon} \\ \mathbf{y}_{lat} \end{bmatrix} = \begin{bmatrix} \mathbf{C}_{lon} & 0 \\ 0 & \mathbf{C}_{lat} \end{bmatrix} \begin{bmatrix} \mathbf{x}_{lon} \\ \mathbf{x}_{lat} \end{bmatrix}$$
(2)

Longitudinal DynamicsLateral Dynamics $\mathbf{x}_{lon} = \begin{bmatrix} u & w & q & \theta & alt & \tau \end{bmatrix}^T$ $\mathbf{x}_{lat} = \begin{bmatrix} v & p & r & \phi & \psi \end{bmatrix}^T$ $\mathbf{u}_{lon} = \begin{bmatrix} \delta_e & \delta_t \end{bmatrix}^T$ $\mathbf{u}_{lat} = \begin{bmatrix} \delta_a & \delta_r \end{bmatrix}^T$ $y_{m_{lon}} = \begin{bmatrix} V_a & \alpha & q & \theta & alt \end{bmatrix}^T$ $y_{m_{lat}} = \begin{bmatrix} \beta & p & r & \phi & \psi \end{bmatrix}^T$


$$V_a = \sqrt{u^2 + v^2 + w^2} \quad \alpha = \tan^{-1}\left(\frac{w}{u}\right) \quad \beta = \sin^{-1}\left(\frac{v}{V_a}\right)$$

Paulo Padrão

PEE-UFRJ

ATLMS Main Idea

- Adaptability of the LMS to reinitialize the SPRT
- SPRT for each data sample:
 In favor of H₀: normal mode
 In favor of H₁: faulty mode
 - Not enough information
- Adaptive threshold behavior: Different directions under different hypothesis
- Alarm flag activation: adaptive threshold crossing the insensitive residual r₀

Paulo Padrão

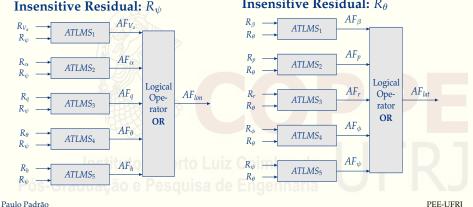
ATLMS PARAMETER TUNING

- ► Safety Offset:
 - Prevents undesired false alarms due to the dynamics of the insensitive residual;
- Sensitivity Rate:
 - Describes the sensitivity of the adaptive threshold due to changes in the trend of the residuals as determined by the SPRT.
- Convergence Rate:
 - Originally from the LMS algorithm
 - Responsible for the adaptation stability and convergence speed of the ATLMS.

Pos-Graduação e Pesquisa de Engenharia

Paulo Padrão

PEE-UFRJ


Bank of ATLMS for Longitudinal **Dynamics**

Sensitive Res.: $R_{Va} R_{\alpha} R_{a} R_{\theta} R_{h}$

Bank of ATLMS for Lateral **Dynamics**

Sensitive Res.: $R_{\beta} R_{p} R_{r} R_{\phi} R_{\psi}$

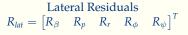
SIMULATION METHODOLOGY AND ASSUMPTIONS

- Occurrence of single, additive faults in primary IMU;
- Backup IMU as well as other aircraft sensors do not fail;
- Reconfiguration procedure: switch from primary IMU to backup IMU once a fault is detected.
- Simulation time: 100 s
- All faults are introduced at 50 s.

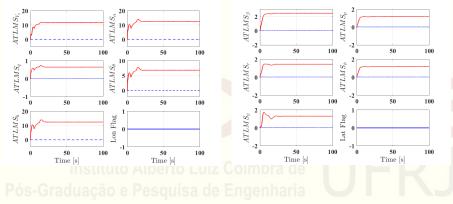
Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia

Paulo Padrão

PROPOSED FAULTS


- Abrupt Fault: modelled as a step-wise function. It represents bias in the monitored signal;
- Incipient Fault: modelled by ramp signals. It represents drift of the monitored signal;
- Extra Noise Fault: modelled by an abrupt change of the signal standard deviation.

Fault	Measurement	Amplitude
Incipient	θ	0.2 rad/s
Extra Noise	q	$\mathcal{N}(\bar{\mu}=0,\sigma=0.01)$
Abrupt	lberto ϕ iz Coi	0.2 rad

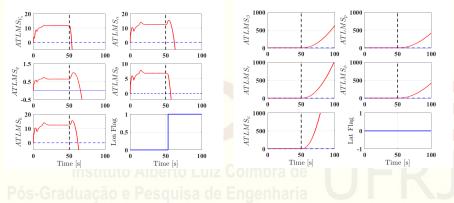

FAULT-FREE SCENARIO

Longitudinal Residuals $R_{lon} = \begin{bmatrix} R_{V_a} & R_{\alpha} & R_{q} & R_{\theta} & R_h \end{bmatrix}^T$

Longitudinal Adaptive Thresholds

Paulo Padrão

PEE-UFRJ


DRIFT FAULT IN PITCH ANGLE θ

 $\begin{array}{l} \text{Longitudinal Residuals} \\ R_{lon} = \begin{bmatrix} R_{V_a} & R_{\alpha} & R_{q} & R_{\theta} & R_h \end{bmatrix}^T \end{array}$

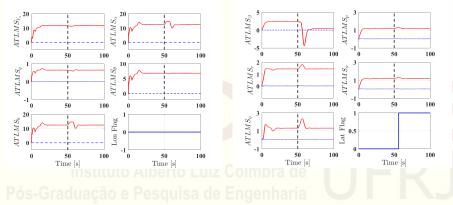
Longitudinal Adaptive Thresholds

Lateral Residuals $R_{lat} = \begin{bmatrix} R_{\beta} & R_{p} & R_{r} & R_{\phi} & R_{\psi} \end{bmatrix}^{T}$

Paulo Padrão

Model-based Sensor Fault Detection in an Autonomous Solar-powered Aircraft

PEE-UFRJ

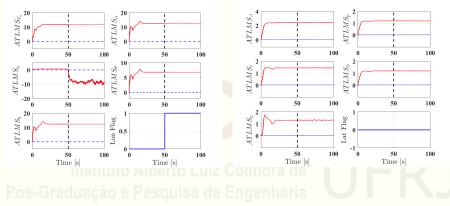

Abrupt Fault in Roll Angle ϕ

Longitudinal Residuals $R_{lon} = \begin{bmatrix} R_{V_a} & R_{\alpha} & R_{q} & R_{\theta} & R_h \end{bmatrix}^T$

Longitudinal Adaptive Thresholds

Paulo Padrão

PEE-UFRJ


EXTRA NOISE FAULT IN PITCH RATE q

Longitudinal Residuals $R_{lon} = \begin{bmatrix} R_{V_a} & R_{\alpha} & R_{q} & R_{\theta} & R_h \end{bmatrix}^T$

Longitudinal Adaptive Thresholds

Lateral Residuals $R_{lat} = \begin{bmatrix} R_{\beta} & R_{p} & R_{r} & R_{\phi} & R_{\psi} \end{bmatrix}^{T}$

Paulo Padrão

PEE-UFRJ

CONCLUSION

Proposed Fault Detection Approach

- Adaptive Threshold:
 - Possibility of tuning of well-known parameters;
 - Distinguish between changes in flight conditions and fault occurrence;
- Satisfactory detection results of abrupt, drift-like and extra noise faults;
- Requires extraction of suitable linear models;

Pós-Graduação e Pesquisa de Engenharia

Paulo Padrão

FUTURE STEPS

- Validation of proposed fault detection approach with real flight data.
- Development of strategies for ATLMS parameter tuning;

 Development of strategies for fault isolation and identification;

Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia

Paulo Padrão

CONTACT

Thank you! Vielen Danke! Tack så mycket!

paulo.padrao@iff.edu.br

Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia

Paulo Padrão

Model-based Sensor Fault Detection in an Autonomous Solar-powered Aircraft

PEE-UFRJ