

Supersonic Transport: from the Tu-144 to the New Generation

Prof. Sergey Chernyshev Chief Scientific Officer TsAGI, Russia

8-9 October 2019, Stockholm, Sweden

TsAGI: 100 years of aerospace technology excellence

- Russia's Leading Aerospace R&D Center
- ✓ Founded in 1918
- ✓ World Largest Testing Facility in Single Location
- Mother Organization for Many Russian R&D Institutes and Design Bureaus (CIAM, VIAM, LII, GosNIIAS, SibNIIA, Tupolev, etc.)
- Training Facility for top Russian Technical Universities

Professor N.E. Zhukovsky 1847–1921, founder of TsAGI

TsAGI: Main Areas of Expertise

- > Aerodynamics & Hydrodynamics
- AeroThermodynamics & Gas Dynamics
- Aeroacoustics
- Aircraft Certification & Flight Testing
- Aircraft Propulsion
- Aircraft Strength & Structures
- Alternative Energy Sources
- Atmospheric & Environmental Research
- > Air Traffic Management Research

- > Experimental Facility Development
- Flight Dynamics & Control Systems
- Flight Simulation & Pilot Training
- Industrial Propellers & Fans
- Lasers & Optics
- > Holography
- Microwave Technology
- Plasma Physics
- Precision Manufacturing

Large 24x14 m Subsonic Wind Tunnel

Subsonic Wind Tunnel T-101

552 m/s
elliptic 24×14 m
–20°+20°
$-180^{\circ}+180^{\circ}$

Ø2.5 m Transonic Wind Tunnel

Transonic Wind Tunnel T-106

low Mach number	0.151.1
Re number per 1 m	up to 35·10 ⁶
Dynamic pressure	up to 58 kPa
Test section section diameter	2.5 m

2.75 x 2.75 m Transonic Wind Tunnel

Transonic Wind Tunnel T-128

Test section: 2.75×2.75 m Flow speed: M = 0.4...1.7Adaptive wall perforation

2.25 x 2.25 m Supersonic Wind Tunnel

1918-2018 **TsAGI**

1.0 x 1.0 m, M = 10 Hypersonic Wind Tunnel

Hypersonic Wind Tunnel T-116

Flow M number	1.810
Cross section area	1×1 m
Total pressure	1108000 kPa
Dynamic pressure	8120 kPa
Stagnation temperature	2901075 K
Run duration	up to 300 s
Angle of attack (α)	-6°+30° (60°)
Side slip angle (β)	–4°+9°

Ø1 m, M=20 Hypersonic Wind Tunnel

Hypersonic Wind Tunnel T-117

Flow M number	7.520.0
Nozzle diameter	1 m
Re number per 1 m	(0.158.5)·10 ⁶
Total pressure	0.820 MPa
Dynamic pressure	up to 12 kPa
Stagnation temperature	6003400 K
Run duration	30180 s
Angle of attack (α)	–25°+80°
Side slip angle (β)	±30°

Acoustical Anechoic Chambers

10

Full Flight Engineering Simulator

PSPK-102 Flight Simulator

Flexible configuration control system Control side-sticks 4-channel collimating visualization system 6-degree hydraulic motion system Graphic instrument panel

Global Air Transport System

- Air Traffic doubles every 15 years
- Demand for faster travel
- Business and time critical shipments

Supersonic Flight — a New Horizon of Aviation Mobility Moscow–Vladivostok Flight

<u>сцаги</u> 1918-2018

TSAG

First Generation of Supersonic Transport

TSAG

Supersonic Flight Research based on the Tupolev-144

- Overall & distributed aerodynamic characteristics
- Thermodynamics and surface temperature measurement
- Take-off and landing ground effect
- Stability and controlability
- Sound radiation and noise management
- > In-flight structure aeroelasticity
- Sonic boom

World Projects of Supersonic Business Jets

	Flight Mach Number	Range, km	Q-ty PAX	First Flight	
Aerion AS2 , USA	0.95 — 1.4	9300	9	First flight in 2023	62
Gulfstream QSJ , USA	1.6	7500	8		
SAI & LM QSST , USA	2.0	7500	8		
SpikeAerospace S-512 , USA	1.6	10300	18	First flight in 2021	
Boom Supersonic , USA	2.2	8800	55	Demonstrator in 2021	annin anni
Sukhoy / TsAGI Russia	1.8	7500	12	First flight — late 2020's	

World Technology Demonstrator Aircraft - USA

X-59 NASA, USA

Model in WT

Flight Mach Number	Flight Altitude, km	Propulsion	Project start	Current status	Lead time	NASA
1,4	17	from F-18	2016	In progress	2023	

World Technology Demonstrator Aircraft – Japan

JAXA SST Scaled Model

Flight Mach number	Flight altitude, km	Propulsion	Project start	Current status	
2.0	15	—	2011	Flight Testing Campaign 2014 — up to date	

World Technology Demonstrator Aircraft - Russia

Sukhoy / TsAGI concept of low sonic boom supersonic business jet

Flight Mach Number	Flight Altitude, km	Weight, t	Sonic Boom	Current Status	Lead Time
1.8	1517	55	69 dBA	Government Contract 2017—2019	Demonstrator Technical Proposal 2019

Low Boom Supersonic Business Jet Concept

Flight Mach Number	Flight Altitude, km	Weight, t	Sonic boom, dBA	Current status	Lead time
1.8	1416	27	Less than 65	Acting contract for Technology Demonstrator Aircraft Concept Design Development	Dec 2019

Key Technologies

- ✓ Low sonic boom & low noise technologies
- ✓ High fuel efficiency in all flight regimes
- ✓ External environment artificial vision system
- ✓ Variable-cycle power plant design
- ✓ Composite isogrid structure airframe
- ✓ Artificial intelligence

International Supersonic Technology Projects

Acronym:	HISAC
Project Title	Environmentally-friendly high-speed aircraft
Objective	Research on supersonic business jet providing low sonic boom and noise near airport areas
Coordinator	Dassault Aviation (France)
Time Frame	01.05.2005 — 31.10.2009
Partners	38 partners, incl. TsAGI, Alenia Aeronautica, ONERA, EADS, SNECMA, Rolls-Royce, Sukhoi Civil Aircraft Company, CIAM and others

HISAC – Low Sonic Boom Supersonic Business Jet

Contribution of TsAGI:

- sonic boom criteria
- sonic boom and aerodynamic modeling
- design of low-boom a/c configuration;
- MDO analyses

Pressure Signatures and Sonic Boom Loudness

International Supersonic Technology Projects

Technic Museum Sinsheim, Germany

Acronym:	RUMBLE
Project title	Regulation and norm for low sonic boom levels
Objectives	Formulation of proposals to determine the permissible overland sonic boom level and the corresponding measurement methods
Coordinator	Airbus Group Innovations (AGI)
Time frame	2017—2020
Partners	18 partners, incl. ONERA, Dassault Aviation, TsAGI, Gromov Flight Research Institute, MAI, CIAM, SCAC, GosNIIAS, GkNIPAS

RUMBLE Contribution to the ICAO Supersonics Research Roadmap

Main Challenges for the New Generation Supersonic Transport

Lack of international norms on acceptable sonic boom levels for over populated area flight

Aircraft operation requirements and SST integration into the existing ATM system

Concluding Remarks

The <u>Success</u> of New Generation Supersonic Passenger Aircraft Program <u>Depands on</u>:

- Technology and low sonic boom demonstration in real flight for aviation authorities and general public
- Advanced high efficiency supersonic variable-cycle engines development
- ATM upgrade to accept supersonic transport flights
- Strong cooperation of aviation leading organizations worldwide to address existing challanges, i.e. IFAR

EU Research Projects with TsAGI Participation

Thank you for your attention!

