A Multi-fidelity Framework for Evaluating SoS of UAVs

Athanasios Papageorgiou Aerospace Technology Congress 10-Oct-2019

Background

- Aerospace products are part of a network or a "System of Systems"
- SoS analyses have been used in the way customer acquire new assets
- Manufacturers should be able to perform similar analyses

Background

"A SoS can bring forward new capabilities that are beyond those of individual system"

Background

"A holistic engineering approach to aeronautical product development"

Implementation

Tools

SS Analysis

- EO/IR Sensor system
- LOS Communication system
- Miscellaneous systems
- Pathways and routing
- Propulsion system
- Electrical system

Sys

Definition of the CS

CS Analysis

- Exclusively implemented in PACE
 - Use of calculation cases for sizing (*Range-MTOW*, *SM-WingX*, *StabilizerS-VolumeCoef*)

Sys

- Use of ratios to decrease the geometry input parameters (*Wing Span, Fuselage Length*)
- Use of ratios to decrease the design mission parameters (*Speed, Altitude, Range*)
- Use of constraints to check feasibility and airworthiness (*Clearances, Stability, Performance*)

SoS Simulation

Agent-based simulations in NETLOGO ullet

- Agents ("systems")
- World ("scenario")
- Rules of engagement ("tactics")

SoS Simulation

- General behavioral rules
 - Approach/depart sideways
 - Move to closest/highest probability
 - Do not leave the area bounds
 - Abort mission if failure occurs
- In communication range
 - Never fly towards scanned points
 - Never fly towards same point
 - Never fly close to each other

SoS Simulation

AircraftNum 3 StartPosition Edge File Brown: Refueling Black: Parked									
CruiseSpeed1	LoiterSpeed1	TurnRate1	FuelConCru1	FuelConLoi1	FuelTank1	Altitude1	SenRange1	SenField1	
300	300	1	300	300	1000	10	10.2	30	
CruiseSpeed2	LoiterSpeed2	TurnRate2	FuelConCru2	FuelConLoi2	FuelTank2	Altitude2	SenRange2	SenField2	
300	300	1	300	300	1000	10	10.2	30	
CruiseSpeed3	LoiterSpeed3	TurnRate3	FuelConCru3	FuelConLoi3	FuelTank3	Altitude3	SenRange3	SenField3	
300	300	1	300	300	1000	10	10.2	30	
CruiseSpeed4	LoiterSpeed4	TurnRate4	FuelConCru4	FuelConLoi4	FuelTank4	Altitude4	SenRange4	SenField4	
270	270	3	300	300	1000	10	15	30	

ReserveTime	RefuelRate	MinDetection	Waypoints	Drift	BaseDistance	RegenRate
1	1000	0	25	0	10	10

Speed in (I:m/h) Turn rate in (deg/sec) Consumption in (I:g/h) Fuel tark: capacity in (I:g) Altitude in (I:m) Sensor range in (I:m) Sensor ridel in (deg) Reserve time in (h) Refuel rate in (I:g/h) Min detection in (-) Waypoints in (-) Drift in (I:m/h) Base distance in (I:m) Waypoint regeneration in (%)

Reserve time: The amount of time that each aircraft should have in fuel reserves RefuelRate: The rate that the base is able to to refuel the aircraft MinDetection: The minimum probability for skiping a waypoint Waypoints: The number of survivors floating in the sea (defines the probability distribution) Drift: The speed that the survivors are being carried away by currents BaseDistance: The distance of the hypothetical starting point from the (0,0) RegenRate: How many waypoints are regenerated if the objective probability is not reached

1 patch is 1 km 1 tick is 1 sec

Surrogate Models

- Validation
 - NRMSE
- SS level
 - <1%
- CS level
 - One surrogate @4000ULH -> 1.8%-19.8%
 - Multiple surrogates @500ULH -> 0.5%-10.6%
- SoS level
 - Multiple surrogates @500ULH -> 8.1%-11.9%

Case Study 1 (HF) 10 existing UAV designs (A-J) 3 ACs combinations

Case Study 2 (LF) Yet-to-de-designed UAVs Combinations of 2-3-4 ACs

Concluding Remarks

Summary

- Technical developments
 - A methodology for populating the design space
 - Model development at all three system levels
 - A multi-fidelity design exploration framework
 - Surrogate models as a low-fidelity alternative
- Case study results
 - MoE depend on the chosen SoS
 - SoS bring forward new capabilities
 - Strong effect of scenario, tactics, and fidelity

Athanasios Papageorgiou Aerospace Technology Congress 10-Oct-2019

www.liu.se

