

Reexamining Linear Causal Inferences Using Safety and Reliability Metrics

Matthew Stogsdill KTH – Royal Institute of Technology

Brief Introduction

Background

- Trained as a commercial pilot
 - Fixed wing and rotorcraft
- Safety background
 - Masters in Applied Aviation Safety
 - Focused on implementation and training

Current work

- Focuses on system safety and analysis
 - Examining underlying assumptions of current analysis approaches
 - Looking at different data integration and analysis methods
 - And, exploring what is required to analyze the aviation systemcomplex systems

Overview

Is Aviation Getting Safer?

- Are the number of accidents per year decreasing?
- What do we mean by safe?

Are Our Current Tools Sufficient?

- How do the current tools work?
- Where do future tools need to work?

Is Aviation Getting Safer?

Yes, but...

- While accidents per million departures is decreasing
 - Trends in aviation fatalities are not as clear
 - Not 'fair' comparisons
 - Need relative scales
 - Not absolute scales

Need to ensure that comparisons are meaningful so progress can be accurately assessed

Aviation Accident Rates 1975-2018

- We are making substantial progress
 - Improved almost 6σ (six sigma)
- While the quantification of accidents rates is a helpful benchmark
 - The biggest are qualitatively raising awareness within the system

Aviation Accident Rate 1975-2018 (10 Year Periods, Every 5 Years)

Safety within the Air Transport System

- "The state in which risks associated with aviation activities, related to, or in direct support of the operation of aircraft, are reduced and controlled to an acceptable level"
 - ICAO (2018) Safety Management Manual
- "Freedom from accidents (loss events)"
 - Leveson (2011) Engineering a safer world
- "A dynamic non-event"
 - Hollnagel (2014) Safety-I and Safety-II

Safety as Commonly Used

Hollnagel's (2014) three examples:

- 'have a safe flight'
- 'drive safely back'
- 'you will be safe here'

All of which means that:

 'being safe' is that the outcome of whatever is being done will be as expected

Are Our Current Tools Sufficient?

Not if used alone; because...

- Usually used to assess what went wrong (Safety-I)
 - Starting to be used to assess what goes right (Safety-II)
- Only looks at operations that take place
 - Instead of what could occur

Generalized Risk Matrix

- Advantages
 - Popular method by which safety risk is assessed
 - Easy to understand
 - Can be understood by entire organization
- Limitations
 - Overly generalized
 - Static representation of dynamic processes
 - Difficult to standardize assessment process

What is Needed for These Tools to Work

What We Actually Saw

What We Actually Saw

Going Forward

Integration of Multi-Source/Modal Data

- Amount of data being collected is increasing dramatically
 - From many sources
 - With many types
- The processes are constantly changing
 - Exceedances are ill suited for this situation

Needs more holistic and dynamic approach

Need For Balance

- Current methods are overly influenced by historical events
 - Works great when the system and environment are known
 - But what happens when
 - The system grows to fast?
 - The technology being used is being updated or upgraded?
 - The environment is changing?
- In such cases can we be assured that history is the best teacher?

System/Environmental Analysis Considerations

	System Dynamics Stable	System Dynamics Unstable
System Environment Stable	 Known System Dynamic Known Environmental Dynamics 	 Unknown System Dynamics Known Environmental Dynamics
System Environment Unstable	 Known System Dynamics Unknown Environmental Dynamics 	 Unknown System Dynamics Unknown Environmental Dynamics

Embracing Linear Operational Causality (Bounded)

- Many non-linear causal influences shape the operational environment and context
- Once a flight takes off it becomes constrained to mostly linear rules
 - Many of which we already know, and the goal is to only learn the others during controlled tests

https://www.bauhaus-luftfahrt.net/en/

Looking at What Has Not Happened

- In evaluating only the outcomes
 - Only what has been seen in the past can be analyzed (good or bad)
- To truly look at what goes right, we must look at the flights that do not occur

Conclusions

- While aviation is getting safer, the rate of improvement is plateauing
 - Requires an analysis of the current tools we are using
- Current tools are still invaluable however
 - Many of the assumptions are hard to justify
 - Are not suited for creating predictive insights
- Causality will be difficult to determine
 - Without the questions we are asking are fundamentally causal

Thank you for your attention

Questions?