Equations of State in Fighter Aircraft Oleo-pneumatic Shock Absorber Modelling

FT2019, 8.10.2019

Artpu Heininen¹, Jussi Aaltonen¹, Kari T. Koskinen¹, Juha Huitula²
¹. Automation Technology and Mechanical Engineering, Tampere University, Tampere, Finland
². Finnish Defense Forces Logistics Command, Tampere, Finland
Content

1. Introduction
2. Shock absorber
3. Gas modelling
4. Equations of state
5. Shock absorber model
6. Validation measurement
7. Discussion
8. Coupled simulation
Introduction

Motivation: a planing mechanism assembly failure (PMA)

An axle lock link becomes unlocked
 • Allows the main wheel to deplane
 • Lost in directional control
 • The failure has occurred globally

A specific cause has not been identified
 • Tire pressure, shock absorber servicing, link buckling, among others

Introduction

Objectives

- Learn new information of the operation of the shock absorber
- Investigate the operation during landing
- Advance condition monitoring methods of the shock absorber

Field testing too expensive and dangerous

Modelling and simulation
Two Stage Oleo-Pneumatic Shock Absorber

a) Primary piston assembly
 - Hydraulic oil

b) Metering pin
 - Variable cross-section

c) High pressure chamber
 - Nitrogen in high pressure

d) Orifice support
 - Low pressure nitrogen and hydraulic oil
Gas modelling

Different ways to model the gas volumes

• Modelling the gas dynamics
 o The motion of the gas is taken into account
 o Parameters vary across the gas volume

• Modelling the gas using control volumes
 o Mass and heat are exchanged between control volumes
 o The gas dynamics within the control volume are neglected
 o The parameters (temperature, etc.) are averaged across the control volume
Two ways to model the thermal behaviour using control volumes

- Polytropic process
 - Gas behaviour is modelled using only one constant
- General internal energy model
 - Gas behaviour is modelled based on the first law of thermodynamics
Polynomial process:

\[pV^k = \text{Constant, where } K = \text{polytropic index} \]

Theoretical values:
1.0 for quasi-static (slow) compression, isothermal
1.4 fast compression, adiabatic

Real values:
1.35 if the gas and oil are separated
1.1 if they are mixed
General internal energy model

\[
\begin{bmatrix}
V \left(\frac{\partial \rho}{\partial p} \right)_T & V \left(\frac{\partial \rho}{\partial T} \right)_p \\
m \left(\frac{\partial h}{\partial p} \right)_T & m \left(\frac{\partial h}{\partial T} \right)_p
\end{bmatrix}
\begin{bmatrix}
\frac{dp}{dt} \\
\frac{dV}{dt}
\end{bmatrix}
= \sum \frac{dm_i}{dt} - \rho \frac{dV}{dt}
- \sum m_i \frac{dm_i}{dt} \cdot h_i - h \sum \frac{dm_i}{dt} + \delta Q
\]

Starting from the rate of change of mass and internal energy, the above system of equations can be derived.

The derivatives of density can be had from the gas equation of state.
Equations of state

Ideal gas law: \(PV = m r T \)

Van der Waals: \(\left(P + \frac{a}{V^2} \right) (V - b) - rT = 0 \)

Redlich-Kwong-Soave: \(\left(P + \frac{a\alpha(T)}{V(V+b)} \right) (V - b) - rT = 0 \)

Peng-Robinson: \(\left(P + \frac{a\alpha(T)}{V^2 + 2bV - b^2} \right) (V - b) - rT = 0 \)

a, b are constants and \(\alpha \) thermal dependent factor,
Shock Absorber Model

- Created using a commercial multi-domain simulation software LMS Imagine.LAB Amesim

- Governing equations generated from the Bond graph of the system

- The model has the effects of damping, gas spring and friction incorporated
The validation of the model was done using two different cases

- A quasi-static compression
- Dynamical compression
- Using polytropic process requires the change of the polytropic index
Quasi-static compression

Input:
The shock absorber is compressed slowly

Output (Force vs Stroke %):
• Ideal gas law performs poorly
• Small difference with other EOS
Dynamic compression

Input:
The shock absorber is compressed using force as an input

![Graph showing force over time](image-url)
Dynamic compression

The ideal gas law predicts too loose spring

Also the shock absorber reaches zero velocity later than the other EOS
Discussion

- Overall the ideal gas law predicts poor results and should not be used when modelling naval fighter aircraft

- Might be fine with conventional aircraft, as the pressures inside the shock absorber are lower

- It is suggested that other EOS are used, preferably Peng-Robinson as it should be the most accurate according to literature
Coupled simulation

- The shock absorber model was connected to a MBS model using a Matlab interface.
- A rigid model of the landing gear with real aircraft mass.
- Solves the kinematic and kinetic equations and lift, gravity, tire compression, etc.
Coupled simulation
Gas-liquid ratio

Distorting the ratio of gas and liquid affects the pressure and the maximum stroke during landing.
Thank you for your time!
arttu.heininen@tuni.fi
https://fi.linkedin.com/in/arttu-heininen