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Background

» Challenges in air combat training
* High costs
* Limited air space
o Safety
* May reveal tactics during live training
 Difficult to realize relevant training
scenarios
* Must use simulation to a higher degree
e Ground-based simulators

 Embedded simulation capabilities in
aircraft

e Simulation networks - Live, Virtual and
Constructive (LVC) simulation




NFFP7 Project Overview

» Find efficient and effective pilot training

solutions for fighter aircratft: Synthetic Red Aircraft
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Training Process
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User Roles
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Adaptive Training System
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Reinforcement Learning

 Reinforcement Learning

» Learning by interaction with an
environment

* Learning is guided by a reward function
 The goal is to maximize future return
* Must balance between exploration and
exploitation
 Deep Reinforcement Learning

» Use neural network to represent the
decision making policy
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Reinforcement Learning
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 Multi-Agent Reinforcement Learning Agent

» Train teams of competing agents
« Multi-agent exploration
« Multi-agent credit-assignment

Environment
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 Multi-Objective Reinforcement Learning
* Prioritize among conflicting objectives
* Build diverse agents
» Build adaptive agents
e Approaches
» Learn sets of policies O

» Learn single policy that is conditioned ®
on objective preferences w
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Multi-Agent Reinforcement Learning

» Cooperative defense of high-value

assets, using MADDPG algorithm /j
« Attackers are controlled by & %
handcrafted behavior trees ("if not P
e

threatened attack, else return to
base”)

» Defenders try to optimize shared
reward by minimizing distance ‘\ij
between each attacker and closest
defender
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Multi-Agent Reinforcement Learning

* Observation space
» Other agents’ positions in last 4

time steps 4
» Action spaces y (k g:{f

* High-level & discrete: Selected L
enemy to pursue (given as input to ~/D ) A =
low-level controller) S p —~ ‘4
» Low-level & continuous: Left/right A d N v
turns with various load factor (2-49) v < ‘ “\%N
« Silent and communicating M
agents
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Multi-Agent Reinforcement Learning

Learning progress

Using high-level discrete action space Using low-level continuous action space
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Multi-Agent Reinforcement Learning

High-level discrete action space

A€ > $Q =¥

Low-level continuous action space
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Multi-Objective Reinforcement Learning
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Example using Time and Safety objectives and the
DQN algorithm
* Negative rewards for time and proximity to air
defense system

Observation space
 Relative distance and direction of air defense and
target in last 8 time steps

Action space
o Left/right turns with various load factor (2-49), in
discrete steps
Trained policies
* Fixed policies for various objective preferences

e Single, tunable policy
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Multi-Objective Reinforcement Learning

Learning progress and relative performance of policies
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Conclusions

* Reinforcement learning in simple air combat scenarios
» Allows agents to learn cooperation
» Allows agents to learn prioritization among objectives
« May require many simulations to find good policies

» Directions for future work
e Study more complex scenarios
e Study combinations of multi-agent & multi-objective learning
« Evaluate training value in experiments with manned
simulators
« For more information:
* Read our paper!
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Thank you!
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