COMPANY RESTRICTED | NOT EXPORT CONTROLLED | NOT CLASSIFIED Martin Blennius | Document number | Issue X

SAAB SURVEILLANCE

AM Airborne Sensor System

MARTIN BLENNIUS, OEYDEL, 20191009

This document and the information contained herein is the property of Saab AB and must not be used, disclosed or altered without Saab AB prior written consent.

Efficient solutions for safety and security, surveillance and for threat detection and protection.

1111 111

BUSINESS AREA SURVEILLANCE

Martin Blennius, OEYDEL

This document and the information contained herein is the property of Saab AB and must not be used, disclosed or altered without Saab AB prior written consent.

AM HEAT EXCHANGER

- The Challenge
- The Solution
- Verification
- AM Qualification

AM IN HEAT EXCHANGER STARTED IN 2012 WITHOUT KNOWING IT

- New heat exchanger for AESA needed
- The new design had some serious drawbacks;
 - Impossible to get the adhesive to survive
 - Poor cooling performance $-\Delta T = 17-18$ °C
 - High weight M = 165 g
- What to do?

CONCEPTUAL PHASE - 2013-2014

- Instead of adhesive we studied;
 - Laser welding
 - Electronic beam welding
 - Friction stir welding
 - Vacuum and dip brazing
- In parallel new design of cooling cavities was studied;
 - Traditional serial cooling channels
 - Combination of serial and parallel cooling channels
 - Only parallel cooling channels with "obstacles", heat transfer conductors
- Only working method was dip brazed parallel cooling channels with heat transfer conductors
- After some struggle we did get rid of the salt ...

∆T = 10-11 °C M = 149 g

COLD SHOWER - 2015

- We where worried about air pockets.
 - We manufactured a transparent 3D-printed plastic prototype
- And air pockets became a horror!
- At this time we did get in contact with TTC.
 - Might it be possible to increase cooling properties and get rid of dip brazing?
 - Project decision to manufacture an AM prototype in aluminium
- What to do now with air pockets?

Big air pocket

NEW MIND SET 2015

- AM open up for new features, for example small channels...
- Would one channel for evacuation of air work?
- In...
- Combination with a "special" nozzle?
- Why not?!
- Try!

A NEW WORLD OPENED

SOLUTION PHASE - 2015

- The 3D-printing of heat exchanger prototypes went well
- Material for AM, EOS Aluminium AlSi10Mg
 - Tensile strength460MPa (As built)345MPa (heat treated)
 - Yield strength
 240MPa (as built)
 230MPa (heat treated)
 - Fatigue strength
- 97MPa (uncertain data)
- A new patent searched idea to get rid of air pockets was invented – a "vacuum cleaner"
- Cooling performance improved by 10 °C!
- Weight reduced to 123 g (- 25%)

• Does it work?

VERIFICATION PHASE - 2016

- Automatic de-airing, no air pockets
- Patent pending
- Result ok

"vacuum cleaner"

STIFFNESS

- Lower weight, reduced by 25%
- Slight lower stiffness
- Result ok

INTERNAL PRESSURE - STATIC

- Important with internal radius
- Easy to control stress with reinforcement
- Result ok

COOLING PERFORMANCE

- Even, directed and efficient cooling performance
- Cooling efficiency improved with 10 °C
- Difference between heat sensitive amplifiers within 1 °C
- Cooling performance close to turbulent flow
- Result ok

FATIGUE

- High requirements
- High packaging requirements
- High levels, uncertain data and no standard -> warning!
- Environment test needed!

RANDOM RESPONSE VIBRATION

- Random response in 3 directions
- Up to GRMS 32 g²/Hz
- No structural damages 1:th time
- Repeat
- No structural damages
- Powder at inlet/outlet discovered
- Result ok

QUALIFICATION PHASE - 2017/2018

Why?

- New process lack of standards
- Unique products och unique machines

What?

- Powder
- Material
- Product

When?

- New or changed detail/powder/parameters
- Before serial production or verification

PQ SET UP

- 1 pilot build á 4 details + 3 PQ-build á 12 details
- Checklist with 15 points:
 - Pulver: Microstructure, chemical constitution, grain size, density, porosity, degradation, traceability, re-use etc.
 - Material: LOF, microstructure, porosity, strength, effective area
 - Produkt: Dimensions, powder contamination, tightness, CT-scanning
- Sync with ISO/ASTM52910-17 & ISO/ASTM52901.2
- Sync with NASA MSFC-SPEC-3717 and 3716

Processkvalificering, PQ

lr Ansva	rig Aktivitet	Beskrivning	Plan	Status
	Beställning	0.1 0		
		0.2 D		
		0.3 A		
	Beredning	118		
	Ämne	12M	☑ 1.	1 [] 1.
	Anne	130	V 1.	
		140	· 1.	4 1 1
		1.4 D		5 1 1
_	Dubies	1.5 Pi		
	Pulver	2.10	V 2.	1 [] 2.
_	Pulver	3.1 K	. 3.	1 🗌 3.
	Pulver	4.1 To	✓ 4.	1 🗌 4.
		4.2 D	✓ 4.	2 🗌 4.
	Tillverkning	5.1 Fy	7 5.	1 🗆 5.
	Ämne	5.2 Ti	∠ 5.	2 🗌 5.
		avbro	✓ 5.	3 🗌 5.
		5.3 D	V 5.	4 🗌 5/
		5.4 Av	✓ 5.	5 🗌 5.
		5.5 Sł	5.	6 🗌 5.
		5.6 BI		
	Mätning	61M	6.	1 6.
		6.2 D	6.	2 🗌 6.
	Provning	7.1 Br		
		72 4	V 7.	1 [] /. 7 [] 7
		734	V 7.	2 1 7
		1.3 6		
-	Dokument-	8 1 F		1 🗌 9
	ation	820	V 8.	$2 \square 8$
	Tillvorkning	0.1 M		1 9
	Detali	9.1 M	· · · · · · · · · · · · · · · · · · ·	2 9.
	Detaij	9.2 D	9.	3 🗌 9.
		9.5 R	✓ 9.	4 🗌 9.
2	Proving	1014	10	.1 🗌 10
	Renhet	11.1.1		.1 1 11
-	nemet			
2	Mätning	12.1	V 12	.1 1 17
		12.2.1	V 12	.2 12
3	Provtryck	12.1.1	V 1	3.1 1
1	Vthehanda	13.1.1	2 1	
	rependinga	13.21	V 14	.2 14
-	Lovoranc	15.1 (
•	Leverans	15.1 (15.2 Shuffirmarka	✓ 19	.1 [] 19
		15.2 Southorpacka		2 1 19
		15.5 Derakria tiliverkningstid & ledtid	- I - I	
		15.4 Leverera	<u> </u>	. 15

AM SET UP X3

PQ POWDER

Tabell 5 Kemiek sammansättning (vikte-%)

- Powder was approved in all aspects
- We reuse powder and add the used amount at every build
- We follow NASA guidelines according to detail class and check up powder quality thoroughly every 10 builds

		- 9	1	<u>50 μm</u>
100	0			
	0.0			ale 1

Tabell 6. Storlek på pulverkorn, pulver märkt AlSi10Mg, Z261701, 20

Metod	Standard	Resultat	
		Dv (10) 23,7 μr	n
Laser diffraktion	ASTM B822	Dv (50) 43,5 μm	n
		Dv (90) 73,7 μn	n
		106 > d > 75 μm 0,06 %	6
Cilktonalus		75 > d > 63 μm 11,97 %	6
Siktanalys	ASTM D214	63 > d > 45 μm 31,55 %	6
		d < 45 µm 55,82 %	6

Tuber of Remote Summan Summa Prices Al-												
Märkning	AI	Cu	Fe	Mg	Mn	Ni	ο	Pb	Si	Sn	Ti	Zn
AlSi10Mg, Z261701, 20171123	rest	<0,01	0,22	0,41	<0,01	0,04	0,029	<0,01	9,92	<0,01	<0,01	<0,01
Analysgränser enligt l	Analysgränser enligt EOS datablad:											
AlSi10Mg	rest	≤0,05	≤0,55	0,2- 0,45	≤0,45	≤0,05	-	≤0,05	9,0- 11,0	≤0,05	≤0,15	≤0,10
EOS mill test certificate	rest	0,01	0,14	0,32	<0,01	0,02	-	<0,05	9,2	<0,05	0,01	<0,01

PQ MATERIAL

- Material microstructure looked as expected
- Low anisotrophy
- In first PQ run the parameters were mixed which caused poor strength results
- Be aware of rough surface takes effective area

	Horizontal	Vertical		
Ultimate tensile strength, Rm	340 MPa (49 ksi)	350 MPa (51 ksi)		
Yield strength, Rp0.2	220 MPa (32 ksi)	225 MPa (33 ksi)		
Elongation at break, A	12 %	9 %		

Figur 10. Dragprovstav - mitten, exempel på LOF, hög förstoring (500x), LOM.

RT Tensile Test - EN ISO 6892-1: 2016 B										
	Dimensions	GL	R _{p0.20}	Rm	A%	Z%	Temp	Comments		
	[mm]	[mm]	[N/mm ²]	[N/mm ²]			[°C]			
001:Axial	6.02	30.00	-	390	5.0	8.0	21.0	See Below		
002:Axia1	6.01	30.00	237	387	4.5	6.5	21.0	20171123/3-2		
003:Longitudinal	1.97 x 12.46	50.00	225	385	5.0	-	21.0	See Below		
004:Longitudinal	2.07 x 12.49	50.00	219	378	5.0	-	21.0	See Below		
005:Longitudinal	2.02 x 12.49	50.00	232	376	2.5	-	21.0	See Below		

PQ PRODUCT

- All blanks flatness were approved
- Geometrical measurements within tolerances
- Tightness tested up to 60 bar without failure
- We had problem with reference for machining
- CT-scanning was approved

PQ PRODUCT

- Cleanliness was within tolerance acc to AR4059 Class 8 after new cleaning process
 - Before:
 Storlek
 5-15 μm
 16-25 μm
 26-50 μm
 51-100 μm
 >100 μm

 Antal
 2038840
 662472
 376528
 74516
 4684

 Krav
 3186%
 5811%
 18594%
 20699%
 7319%
 - After:
 Storlek
 5-15 μm
 16-25 μm
 26-50 μm
 51-100 μm
 >100 μm

 Antal
 1437
 261
 169
 77
 17

 Krav
 2%
 2%
 8%
 21%
 27%

 Interesting findings, other processes contaminated the product with large particles, not AM itself

Cleaning equipment. Observe the risk for powder explosions!

Fig 10. Part 3, solid particle. L=700µm

Fig 4. Part 2 Soft fiber. L = 1200µm

SUM UP

- The AM cooling plate reduce weight, resist extreme environment and improve crucial cooling performance
- Final cost slightly higher than traditional but the improvements are more than worth it
- Don't forget the fixture
- The AM process is stable if you:
 - keep track on powder and parameters
 - use the same machine
 - always build in the same way
- Now we set up for serial production, 600 samples/year
- And proceed with other components and systems

QUESTIONS?

• Thanks for your attention!