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» well-founded, systematic
abstractions

» clear & rigorous path from
abstract behavior to silicon

0C. B. Watkins. “Integrated Modular Avionics: Managing the Allocation of Shared Intersystem Resources”.In 2006 ieee/aiaa 25TH Digital Avionics

ystems Conference (2000), pp. I-12.



ForSyDe

ForSyDe : Formal System Design
ForSyDe = Foresight;

P Definition of foresight (Merriam-Webster)
1. an act or the power of foreseeing : prescience
Through foresight she could tell what the outcome would be.
2. provident care : prudence
had the foresight to invest his money wisely

3. an act of looking forward; also : a view forward
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ForSyDe

Design Constraints

o power and energy

Analyzable Application Models
o formal base (MoCs)

® executable

Platform Architecture
e multiprocessor

o predictable performance

Design Refinement &
Design Space Exploration
(based on formal model and

’ predictable architecture)
Mapping

Synthesis Implementation
Implemen-

tation

and
Compilation

o Customized hardware

o Efficient software

high level of abstraction
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modeled aspects

rigorous design flow

multiple, heterogeneous
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Behaviors, not Functions

Not only numbers but
> interaction
» dynamics
» synchronization
> timing
» concurrency/parallelism
» protocol/modes
> communication
» probabilistic distribution
> security primitives

» other non-functional properties...




Layered Languages

Each layer consists of:
> a set of structured types
= encode properties
> a set of functions over these types
= transformations, rules

» a set of higher order functions (HOF)

= conduits between layers




A Language for Timed Behavior

43,21
3'2’1 SY.comb
SY process
Signals Processes
» encode temporal information > act according to MoC semantics
> define tag systems* > created with process constructors (HOF)

EA Leeand A. Sangiovanni-Vincentelli. A framework for comparing models of computation. Dec. 1998.
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A Language for Structured Parallelism

(b) reduce (c) pipe

Parallel Patterns
» functional relations between elements

Regular Structures (e.g. Vectors)
> encode spatial information

> enable catamorphisms

S -

(d) recur

Rooa

(e) prefix

> potential for parallel distribution
> created with skeletons (HOF)

2David B Skillicorn. Foundations of parallel programming. 6. Cambridge University Press, 2005.
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A Language for Testing Properties

pre-condition = statement
Example:

Va € List(a) = reverse(reverse a) = a

Generators

» Properties & Combinators
> express pre-conditions
> test truth statements
> abstract random data generators

> systematic composition of generators

> “smartened” by algebraic properties®

3 John Hughes. “QuickCheck testing for fun and profit”.In:  International Symposium on Practical Aspects of Declarative Languages. Springer. 2007.
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Layered Languages in Tandem

11 12 13 12 13 14
(+1)
SY.comb

21 22 23 22 23 24
(+1)
SY.comb

V(Ssy(Z)) i V(Ssv(Z))

Vs € Ssy(V(e)) = len( Skeleton.farm(MoC.comb(+1)) (s)) = len(s)
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Simulation, Validation, Verification

Encryption/ Decryption
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Simulation, Validation, Verification

Transceiver System

Encryption/ Decryption

] Continuous Time [ Untimed (5DF)
1 in = {0,1,2,3,4,5}

7 out =
{0,1,10,3,4,5}

.

11/12



Simulation, Validation, Verification

Transceiver System
Encryption Decryption

- @\ D_;@

Implementation
[T

(simplfid DES)

integer
o)

2= Nrrr X Nuj p2 =1 = pa = ¢ = No X Nerri €5 = pa = Nprr

Cube HL Model Tests :
oot GENERIG Farn/deesinot alter the input structure 3 sed 100 tests]
right number of outputs 160 tests]
obr legal value range 200 tests]

DBF equivalence with simple dot product operation : 200 tests]
PC  right number of outputs 160 tests]
[ contouous Time [ nimed (50F) [ smvoncns B W L igHE i€ uspulse response [Failed]
1 **+ Failed! Falsifiable (after 5 test
in = <15.562785 :+ 2.579895,18.506731 :+ 6. (-7. i+ (-7.488059), (-28.211084
in {01132:3’415} (used seed 34154672562 Ss062182)
. legal value rang [OK, passed 260 tests]
P T 5 th el anset (hag e tubestor el anel o n [OK, passed 160 tests]
U U 'L-L right number of outputs [OK, passed 100 tests]
. “"'fb‘mdj J'LF‘ Jl CFAR right number of outputs [OK, passed 100 tests]
| INT right unit impulse response [0K, passed 76 tests]
2 Properties  Total
: Passed 10 16
3 S Fatled 1 2
o Total 11
o S— R et
] test (suite: tests-stream)
out -
{0,1,10,3,4,5} 5 L | L R L R R
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The ForSyDe Modeling Frameworks

Open source tools available online:
» ForSyDe-Shallow =L

The original modeling framework ForsyDe

» ForSyDe-Deep
Synthesis towards VHDL. -
» ForSyDe-SystemC @

Closer to imperative targets Sy

» ForSyDe-Atom
Sandbox for novel modeling concepts

» ForSyDe-Eclipse
Eclipse-based GUI frontend https://forsyde.github.io/
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