Languages and Tools for Formal Design of Cyber-Physical Systems

George Ungureanu

1

Timmy Sundstrom?

Ingo Sander*

LSchool of EECS, KTH Royal Institute of Technology, Stockholm, Sweden
2Business Area Aeronautics, Saab AB, Linkdping, Sweden

Ingemar Soderquist?

1
C

= I e

(== i

?

~

October 8, 2019

VINNOVA nFFr~

Sweden'’s Innovation Agency [T]

Cyber-Physical Systems

1/12

Cyber-Physical Systems

— =

CYBER: PHYSICAL:
e algorithms e dynamics

| e security il . e safety I
e adaptability : e repeatability ©

1/12

Cyber-Physical Systems

— =

CYBER: PHYSICAL:
e algorithms e dynamics

| e security il . e safety I
e adaptability : e repeatability ©

1/12

Cyber Physical System Design

» combine many mature disciplines

» tools to design and simulate behaviors

» design flows from specification to
implementation

Cyber Physical System Design ... Challenges

» combine many mature disciplines

» incompatible abstractions
» fundamental issues with interpretations of
time

» tools to design and simulate behaviors

» design flows from specification to
implementation

Cyber Physical System Design ... Challenges

» combine many mature disciplines
» incompatible abstractions
» fundamental issues with interpretations of
time
» tools to design and simulate behaviors
» text-based specification documents
» no formal semantics = low correlation
between simulation model and design artifact
» design flows from specification to
implementation

12

Cyber Physical System Design ... Challenges

» combine many mature disciplines
» incompatible abstractions
» fundamental issues with interpretations of
time
» tools to design and simulate behaviors

» text-based specification documents
» no formal semantics = low correlation
between simulation model and design artifact

» design flows from specification to
implementation
» refinements are ad-hoc, based on designer
experience
» heavily dependent on prototype testing across
design stages

12

Cyber Physical System Design ... Challenges

» combine many mature disciplines
» incompatible abstractions
» fundamental issues with interpretations of
time
» tools to design and simulate behaviors
» text-based specification documents
» no formal semantics = low correlation
between simulation model and design artifact
» design flows from specification to
implementation
» refinements are ad-hoc, based on designer
experience
» heavily dependent on prototype testing across
design stages

HUGE COSTS!

12

Just Implement It...

incluce wsphio.n

int natncvotd)
WOTCTL = WOTPN | WOTHD; /7 Stop wotchdog ier

PuoIR - o110 e -

//Configure clock systen
UCSCTLO = oxdand; /s ot o 0o, e
UCSCTL - ocoRseLs;

sz - 24
UCSCTLS - SELREF_2;
sl L seunp s o .(

hacn, s Paca 1 mar: 17 sux - v, up dose
THBCCRS - /1 second period

=

e
PO A+ s1TH;

LT & TAIFG) = 03¢

)
TCTL & AL
)

1Boeing 787 Dreamliners avionics software. Source https://informationisbeautiful.net

3/12

Just Implement It...

of‘coder

1Boeing 787 Dreamliners avionics software. Source https://informationisbeautiful.net

12

Just Implement It...

codet

1Boeing 787 Dreamliners avionics software. Source https://informationisbeautiful.net

12

Just Implement It...

Learn from VLSI design
» unprecedented complexity
» well-founded, systematic

abstractions

» clear & rigorous path from
abstract behavior to silicon

1Boeing 787 Dreamliners avionics software. Source https://informationisbeautiful.net

12

Just Implement It...

Learn from VLSI design
» unprecedented complexity
» well-founded, systematic

abstractions

» clear & rigorous path from
abstract behavior to silicon

12

Just Implement It...

| S Learn from VLSI design

IMA Systom Rartions E
System Frocessing 7\ Processin o .
Architecture: b runton £ rurction Fingion | ingion s Mo > un prece d ente d comp I exi ty

Virt
Bou

» well-founded, systematic
abstractions

» clear & rigorous path from
abstract behavior to silicon

0C. B. Watkins. “Integrated Modular Avionics: Managing the Allocation of Shared Intersystem Resources”.In 2006 ieee/aiaa 25TH Digital Avionics

ystems Conference (2000), pp. I-12.

ForSyDe

ForSyDe : Formal System Design
ForSyDe = Foresight;

P Definition of foresight (Merriam-Webster)
1. an act or the power of foreseeing : prescience
Through foresight she could tell what the outcome would be.
2. provident care : prudence
had the foresight to invest his money wisely

3. an act of looking forward; also : a view forward

/12

ForSyDe

ForSyDe : Formal System Design
ForSyDe = Foresight;

P Definition of foresight (Merriam-Webster)
1. an act or the power of foreseeing : prescience
Through foresight she could tell what the outcome would be.
2. provident care : prudence
had the foresight to invest his money wisely

3. an act of looking forward; also : a view forward

>

high level of abstraction
formal semantics

clear separation between
modeled aspects

rigorous design flow

multiple, heterogeneous
predictable targets

12

ForSyDe

Design Constraints

o power and energy

Analyzable Application Models
o formal base (MoCs)

® executable

Platform Architecture
e multiprocessor

o predictable performance

Design Refinement &
Design Space Exploration
(based on formal model and

’ predictable architecture)
Mapping

Synthesis Implementation
Implemen-

tation

and
Compilation

o Customized hardware

o Efficient software

high level of abstraction
formal semantics

clear separation between
modeled aspects

rigorous design flow

multiple, heterogeneous
predictable targets

Behaviors, not Functions

Not only numbers but

>

>

>

interaction

dynamics

synchronization

timing

concurrency/parallelism Interacting aspects!
protocol /modes

communication

probabilistic distribution

security primitives

other non-functional properties...

Behaviors, not Functions

Not only numbers but
> interaction
» dynamics
» synchronization
> timing
» concurrency/parallelism
» protocol/modes
> communication
» probabilistic distribution
> security primitives

» other non-functional properties...

Layered Languages

Each layer consists of:
> a set of structured types
= encode properties
> a set of functions over these types
= transformations, rules

» a set of higher order functions (HOF)

= conduits between layers

A Language for Timed Behavior

43,21
3'2’1 SY.comb
SY process
Signals Processes
» encode temporal information > act according to MoC semantics
> define tag systems* > created with process constructors (HOF)

EA Leeand A. Sangiovanni-Vincentelli. A framework for comparing models of computation. Dec. 1998.

7/12

A Language for Timed Behavior

4,3,2
1 1
2
3’ 2 SY.comb
SY process
Signals Processes

» encode temporal information

> define tag systems*

> act according to MoC semantics
> created with process constructors (HOF)

ILee and Sangiovanni-Vincentelli, A framework for comparing models of computation.

/12

A Language for Timed Behavior

43
l’
K 42
3 SY.comb
SY process
Signals Processes

» encode temporal information

> define tag systems*

> act according to MoC semantics
> created with process constructors (HOF)

ILee and Sangiovanni-Vincentelli, A framework for comparing models of computation.

/12

A Language for Timed Behavior

4
l’
N 6,4,2
SY.comb
SY process
Signals Processes

» encode temporal information

> define tag systems*

> act according to MoC semantics
> created with process constructors (HOF)

ILee and Sangiovanni-Vincentelli, A framework for comparing models of computation.

/12

A Language for Timed Behavior

1(t)

0.5
o(t)
0 t 1
2
177 }
053 sin(t) /\ B
0 2
057 \/ CT process
1L
Signals Processes
» encode temporal information > act according to MoC semantics
» define tag systems' > created with process constructors (HOF)

ILee and Sangiovanni-Vincentelli, A framework for comparing models of computation.

7/12

A Language for Timed Behavior

0.
0 X sin)(t
—0.

3 8 0
—051 CT process
—_1F
Signals Processes
» encode temporal information > act according to MoC semantics
» define tag systems' > created with process constructors (HOF)

ILee and Sangiovanni-Vincentelli, A framework for comparing models of computation.

7/12

A Language for Timed Behavior

0.5
0-p
! AN
0.
-t @xsin)() /. N\,
14 o s E V(l % Sin)(ER "
0.5+ B
0p
—05] CT process
—1
Signals Processes
» encode temporal information > act according to MoC semantics
» define tag systems' > created with process constructors (HOF)

ILee and Sangiovanni-Vincentelli, A framework for comparing models of computation.

7/12

A Language for Structured Parallelism

(b) reduce (c) pipe

Parallel Patterns
» functional relations between elements

Regular Structures (e.g. Vectors)
> encode spatial information

> enable catamorphisms

S -

(d) recur

Rooa

(e) prefix

> potential for parallel distribution
> created with skeletons (HOF)

2David B Skillicorn. Foundations of parallel programming. 6. Cambridge University Press, 2005.

/12

A Language for Testing Properties

pre-condition = statement
Example:

Va € List(a) = reverse(reverse a) = a

Generators

» Properties & Combinators
> express pre-conditions
> test truth statements
> abstract random data generators

> systematic composition of generators

> “smartened” by algebraic properties®

3 John Hughes. “QuickCheck testing for fun and profit”.In: International Symposium on Practical Aspects of Declarative Languages. Springer. 2007.

9/12

Layered Languages in Tandem

11 12 13

21 22 23

10/12

Layered Languages in Tandem

11 12 13 12 13 14

21 22 23 22 23 24

(+1)

10/12

Layered Languages in Tandem

1112 13 12 13 14
21 22 23 22 23 24

MoC.comb(+1)

10/12

Layered Languages in Tandem

Celeron Layer

11 12 13 12 13 14
(+1)
SY.comb

21 22 23 22 23 24
(+1)
SY.comb

V(Ssy(Z)) i V(Ssv(Z))

Skeleton.farm(MoC.comb(+1))

10/12

Layered Languages in Tandem

11 12 13 12 13 14
(+1)
SY.comb

21 22 23 22 23 24
(+1)
SY.comb

V(Ssy(Z)) i V(Ssv(Z))

Vs € Ssy(V(e)) = len(Skeleton.farm(MoC.comb(+1)) (s)) = len(s)

10/12

Simulation, Validation, Verification

Encryption/ Decryption

[Coniuous Time lumimea 505 [Symhroncus

_f i

7 out =
{0,1,10,3,4,5} 5

RN

11/12

Simulation, Validation, Verification

Transceiver System

Encryption/ Decryption

] Continuous Time [Untimed (5DF)
1 in = {0,1,2,3,4,5}

7 out =
{0,1,10,3,4,5}

.

11/12

Simulation, Validation, Verification

Transceiver System
Encryption Decryption

- @\ D_;@

Implementation
[T

(simplfid DES)

integer
o)

2= Nrrr X Nuj p2 =1 = pa = ¢ = No X Nerri €5 = pa = Nprr

Cube HL Model Tests :
oot GENERIG Farn/deesinot alter the input structure 3 sed 100 tests]
right number of outputs 160 tests]
obr legal value range 200 tests]

DBF equivalence with simple dot product operation : 200 tests]
PC right number of outputs 160 tests]
[contouous Time [nimed (50F) [smvoncns B W L igHE i€ uspulse response [Failed]
1 **+ Failed! Falsifiable (after 5 test
in = <15.562785 :+ 2.579895,18.506731 :+ 6. (-7. i+ (-7.488059), (-28.211084
in {01132:3’415} (used seed 34154672562 Ss062182)
. legal value rang [OK, passed 260 tests]
P T 5 th el anset (hag e tubestor el anel o n [OK, passed 160 tests]
U U 'L-L right number of outputs [OK, passed 100 tests]
. “"'fb‘mdj J'LF‘ Jl CFAR right number of outputs [OK, passed 100 tests]
| INT right unit impulse response [0K, passed 76 tests]
2 Properties Total
: Passed 10 16
3 S Fatled 1 2
o Total 11
o S— R et
] test (suite: tests-stream)
out -
{0,1,10,3,4,5} 5 L | L R L R R

11/12

The ForSyDe Modeling Frameworks

Open source tools available online:
» ForSyDe-Shallow =L

The original modeling framework ForsyDe

» ForSyDe-Deep
Synthesis towards VHDL. -
» ForSyDe-SystemC @

Closer to imperative targets Sy

» ForSyDe-Atom
Sandbox for novel modeling concepts

» ForSyDe-Eclipse
Eclipse-based GUI frontend https://forsyde.github.io/

Thank you!

12/12

