

Formal High-Level Model of a Radar Signal Processing System

George Ungureanu¹ Anders Åhlander² Timmy Sundström³ Ingo Sander¹ Ingemar Söderquist³

¹School of EECS, KTH Royal Institute of Technology, Stockholm, Sweden ²Business Area Surveillance, Saab AB, Linköping, Sweden ²Business Area Aeronautics, Saab AB, Linköping, Sweden

The Context of this Work

NFFP7: CORRECT

- Saab AB & KTH
- current industrial design flows do not have a clear path from the functional specification to product
- information on security, safety, behavior are important aspects to be *expressed* and *assessed*
 - identified by the industry
 - emphasized by certification authorities
- aim to decrease the need for late stage testing and related development costs.

Modeling with ForSyDe

- push orthogonalization in modeling one step further
- harmoniously combine different DSLs capturing different aspects

The AESA Case Study

- Active Electronically Scanned Array Antenna
- typical high-performance component in avionics under real-time constraints
- extremely costly for civil applications today

Why We Use Models?

...to understand systems

...to design systems

...to create systems

Why We Use Models?

To a scientist, the value of a model lies in how well its properties match those of a target (...). But to an engineer the value of an object lies in how well its properties match a model. A scientist asks, "Can I make a model for this thing?" An engineer asks, "Can I make a thing for this model?"¹

...to understand systems

...to design systems

...to create systems

 $v(t) = v(0) + rac{1}{m} \int_0^t F(au) d au$

¹Edward Ashford Lee. Plato and the Nerd: The Creative Partnership of Humans and Technology. MIT Press, 2017.

Layered Languages

Each layer consists of:

- a set of structured types
 = encode properties
- a set of functions over these types
 - = transformations, rules
- ► a set of higher order functions (HOF)
 - = conduits between layers

Signals

- encode temporal information
- ► define *tag systems*²

- act according to MoC semantics
- created with process constructors (HOF)

²E.A. Lee and A. Sangiovanni-Vincentelli. A framework for comparing models of computation. Dec. 1998.

Signals

- encode temporal information
- ► define *tag systems*²

- act according to MoC semantics
- created with process constructors (HOF)

²Lee and Sangiovanni-Vincentelli, A framework for comparing models of computation.

Signals

- encode temporal information
- ► define *tag systems*²

- act according to MoC semantics
- created with process constructors (HOF)

²Lee and Sangiovanni-Vincentelli, A framework for comparing models of computation.

SY process

Signals

- encode temporal information
- ► define *tag systems*²

- act according to MoC semantics
- created with process constructors (HOF)

²Lee and Sangiovanni-Vincentelli, A framework for comparing models of computation.

Signals

- encode temporal information
- ► define *tag systems*²

- act according to MoC semantics
- created with process constructors (HOF)

²Lee and Sangiovanni-Vincentelli, A framework for comparing models of computation.

Signals

- encode temporal information
- ► define *tag systems*²

- act according to MoC semantics
- created with process constructors (HOF)

²Lee and Sangiovanni-Vincentelli, A framework for comparing models of computation.

Signals

- encode temporal information
- ► define *tag systems*²

- act according to MoC semantics
- created with process constructors (HOF)

²Lee and Sangiovanni-Vincentelli, A framework for comparing models of computation.

A Language for Structured Parallelism

Regular Structures (e.g. Vectors)

- encode spatial information
- ► enable *catamorphisms*³

Parallel Patterns

- functional relations between elements
- potential for parallel distribution
- created with skeletons (HOF)

³David B Skillicorn. Foundations of parallel programming. 6. Cambridge University Press, 2005.

A Language for Testing Properties

 $pre-condition \Rightarrow statement$

Example:

 $\forall a \in List(\alpha) \Rightarrow reverse(reverse a) = a$

Generators

- express pre-conditions
- abstract random data generators
- "smartened" by algebraic properties⁴

Properties & Combinators

- test truth statements
- systematic composition of generators

⁴ John Hughes. "QuickCheck testing for fun and profit". In: International Symposium on Practical Aspects of Declarative Languages. Springer. 2007.

The AESA Radar

- typically thousands of antenna elements
- hundreds of GOPS
- when part of control loop, real-time aspect becomes critical

The AESA Signal Processing Chain as a Layered Model

⁴ForSyDe-Atom code available at https://github.com/forsyde/aesa-radar

Digital Beamforming (DBF)


```
dbf :: Vector (SY.Signal (Complex Float)) -> Vector (SY.Signal (Complex Float))
dbf antennaSigs = beamSigs
  where beamSigs = reduce (farm21 (comb21 (+))) beamMatrix
        beamMatrix = farm21 (\c -> comb11 (*c)) beamConsts sigMatrix
        sigMatrix = farm11 fanout antennaSigs
```

Pulse Compression (PC)

- echo is passed through a matched filter to decode its modulation
- basically a moving average/FIR filter

Corner Turn (CT) & Doppler Filter Bank (DFB)

Constant False Alarm Ratio (CFAR)

Why Have We Done This?

...to understand systems

...to design systems

...to create systems

... To Understand the AESA Signal Processing System

Why Have We Done This?

...to design systems

...to create systems

... To Design the AESA Signal Processing System

- system structure
- behavior particularities
- tested properties
- validated the design

Why Have We Done This?

- ...to understand systems $\sqrt{}$ $v(t) = v(0) + \frac{1}{m} \int_0^t F(\tau) d\tau$
 - ...to design systems

 \checkmark

...to create systems

Synthesizing the PC component to FPGA

Given Specification

"For each antenna the data arrives *pulse by pulse*, and each pulse arrives *range bin by range bin*. This happens for all *antennas in parallel*, and all complex samples are synchronized with the *same sampling rate*, e.g. of the A/D converter.

(...)

The goal of the pulse compression is to collect all received energy from one target into a single range bin. The received echo of the modulated pulse is **passed through a matched filter**. Here, the matched filtering is done digitally. "

A Closer Look at the MAV Operation

$$reduce(++) \circ farm(reduce'(+) \circ farm(\times) c) \circ recur(tail)$$

$$N_{\text{Farm}} = N_{\text{Input}} \times N_{\text{Coefficients}}$$

A Closer Look at the MAV Operation

 $reduce(comb(+)) \circ farm(c \mapsto comb(\times c)) \circ recur(delay(0))$

$$N_{\text{Farm}} = N_{\text{Input}} \times N_{\text{Coefficients}}$$

 $N_{\rm Farm} = N_{\rm Coefficients}$

Refining PC into a FIR Process Network

Floating Point to Fixed Point Number Representation

Specification

"After the DBF stage the numbers are represented with sufficient accuracy using 20 bits."

pc :: Vector (SY.Signal (Complex Float)) -> Vector (SY.Signal (Complex Float))

Floating Point to Fixed Point Number Representation

Specification

"After the DBF stage the numbers are represented with sufficient accuracy using 20 bits."


```
pc :: Vector (SY.Signal (Complex Float)) -> Vector (SY.Signal (Complex Float))
```

pc :: Vector (SY.Signal (Complex Fixed20)) -> Vector (SY.Signal (Complex Fixed20))

Load Balancing the FIR Reduction

RTL Synthesis

Why Have We Done This?

- ...to understand systems $\sqrt{}$ $v(t) = v(0) + \frac{1}{m} \int_0^t F(\tau) d\tau$
 - ...to design systems

 \checkmark

 \checkmark

...to create systems

Conclusions & Future work

A Framework for Layered Languages

- orthogonalize aspects of CPS modeling
- isolates design problems

Demonstration on the AESA System

- using ForSyDe ecosystem (https://forsyde.github.io)
- Open-SOUICE (https://github.com/forsyde/aesa-radar)
- technical report

Future Work

- explore other modeling paradigms (e.g. contracts)
- ► HW/SW transformation-based synthesis flow

Design of Sensor Signal Processing with ForSyDe Modeling, Validation and Synthesis George Ungureanu School of EECS VTH Royal Institute of Tachaslace ugeorgefikth.se Timmy Sundström **Business Area Aeronautics** Anders Åhlander Business Area Surveillance Indo Sander Rebord of EECS KTH Royal Institute of Technology Ingemar Söderguist Business Area Areanautics Saah AR Version 0.2

Thank you!