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* Accurate Computational Fluid Dynamics (CFD) is vital for —_— /
predicting aircraft operability and engine/inlet function RANS
« Turbulence-resolving methods needed to accurately .
predict flows where a wide range of spatial and temporal 5
scales are present O LES
< .
« High Reynolds number flows in aeronautical applications s ? ........
: RANS
* Reynolds-Average Navier-Stokes (RANS) for attached o T /f ~
flows; inaccurate for separated flow L Wall-rormal Walk-parallel
interface interface

« Large-Eddy Simulations (LES) for separated flow;
prohibitively expensive for attached boundary layers at
high Reynolds numbers

Schematics of hybrid RANS-LES modeling

Turbulence modeling approaches and related computational cost*

RANS No Strong 107 102
URANS Yes Strong 107 103>
> Hybrid RANS-LES methods (HRLM)  HRMOES) jves o 1o o
LES Yes Weak 1013 1087
DNS Yes Weak 1016 1077

*Spalart, IJHFF 21 (2000)
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Transition from RANS to LES

« Grey area: transition region from RANS to fully developed LES
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Schematic of RANS-to-LES transition.

6 From: Arvidson, Methodologies for RANS-LES interfaces in
turbulence-resolving simulations, PhD thesis, Chalmers 2017




Transition from RANS to LES

Embedded RANS-
LES interface

Examples of Grey Area Mitigation (GAM) methods

RANS

. RANS-LES interface methods
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«  Synthetic turbulent fluctuations &z et 7 - N o
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* High-pass filtering methods

. Computational gétup for mixing layer simulation
Turbulence models with back-scatter
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Mixing layer. Growth of vorticity thickness and momentum thickness.

in turbulence-resolving hybrid RANS-LES,

From: Arvidson et al., Interface methods for grey-area mitigation
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lllustration of GAM using commutation terms at the RANS-LES

interface in mixing layer flow.

International Journal of Heat and Fluid Flow, 73 (2018)



Hybrid RANS-LES on the Gripen inlet

« Large-scale separation inlet flow with strong « Status of today’s hybrid RANS-LES methods
total pressure fluctuations where a wide range . Large-scale separation flow: ok

of spatial and temporal scales are present .
P P P « Complex attached flows and shallow separation

« Improved predictions with HRLM compared to flow: improvements needed
RANS

 Low speed
« High AoA
* High mass flow ratio

This figure has
intentionally been This movie has intentionally been removed
removed

Time-averaged total pressure
contours at the engine face (AIP)

8 Resolved turbulent structures in the Gripen inlet




A serie of CFD projects — one vision...

« NFFP7 - CIAO (on-going, 2018-2022)

 Industrialization of CFD methods for improved predictions
of complex aeronautical flows

 NFFP7 - MultFAS (starts in November, 2019-2022)

« Multidisciplinary advanced computations: Fluid dynamics —
Aeroacoustics — Structural dynamics

A
TRL Industrialization of turbulence-resolving CFD
and multi-disciplinary computational capability
5 —— TRL for industrial applicability
A MIAU

| | | -
NFFP5 NFFP6 NFFP7




NFFP7 In an international context

Industrial applicability \gfa
and confidence level 4
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NFFP7-MultFAS
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Research projects with Saab
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NFFP projects coordinated by
Saab

A mix of national and
international research projects
to achieve international
novelty and fulfill national
(industry) needs




“Industrialization of CFD methods for

NFFP?-CIAO Improved predictions of complex

aeronautical flows”

 CFD where the large-scale turbulence is
resolved in time and space using hybrid RANS-

LES modeling (HRLM) This movie has intentionally been removed

« Main purpose: industrialization of HRLM
» Descritization schemes adapted for HRLM

« Advanced RANS mOdeling for imprOved Resolved turbulence downstream of landing gear using HRLM
HRLM 7 GAAE

« Improved RANS-LES coupling and grey

area mitigation \Gior66
« Main tool: Saab’s flow solver M-Edge CHALMERS CVAO
« Motivation: to strengthen Saab’s and Sweden’s  UNIVERSITY OF TECHNOLOGY 2018-2022

CFD capability in the aeronautical field to meet
future challenges and needs
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NFFP7-CIAQO: Strategy, approach and methodology
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To use outcomes from NFFP5-MADEF, NFFP6-MIAU and other relevant state-of-the-
art national and international R&D projects as starting point

Assessment and improvement of numerical methods, such as low-dissipation and
low-dispersion (LD2) schemes, for improved accuracy in turbulence-resolving
simulations

Introduction of Explicit Algebraic Reynolds Stress Modeling (EARSM) for improved
predictions of complex attached flows such as corner flow separations

Development and demonstration of RANS-LES interface methodology for
geometrically arbitrary interfaces

Development and demonstration of a synthetic turbulence generator (STG) adapted
for Embedded LES (ELES) of compressible flow.

Industrial assessment of the developed methodologies on aeronautical test cases




NFFP7-MultFAS

« Computational Fluid-Structure Interaction (FSI)
and Aero Acoustics (CAA)

« Malin purpose: to establish a robust
computational FSI and CAA process for
complex aeronatical applications

« FSI| and CAA on cavities

« Transonic flow around non-aerodynamic
objects to study aero acoustic mechanisms

* Main tool: Saab’s flow solver M-Edge

« Motivation: to strengthen multidisciplinary
computations within FSI and CAA for
aeronautical applications
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"Multidisciplinary advanced
computations: Fluid dynamics —
Aeroacoustics — Structural dynamics”

This movie has intentionally been
removed

Cavity flow
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M-Edge
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M-Edge (Modularized Edge) is Edge with some functionalities in
modules

M-Edge property of Saab

+ Development in collaboration with FOI and
national/international academia and institutions
M-Edge main components
*  Flow solver, preprocessor, mesh adaptation, ...
«  Stand alone programs

Finite-Volume flow solver
+  Steady/unsteady, inviscid/viscous computations
 Edge and dual grid based, unstructured grids
*  Solves the compressible N-S equations
* Aeroelastics, mesh deformation
*  Models for flow control, adjoint solver ...
* High temperature extensions
*  GUI, documentation
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Creates coarse grids by agglomeration

O Reordering of nodes and edges
» Maximize efficiency for architecture




Reference scheme

LD2 scheme

Results - effect of disretization scheme

Results from NFFP7-CIAO: effect of low dissipation and low
dispertion discretization schemes

Matrix dissipation

15

Resolved turbulent srtuctures

Channel flow

Mean velocity profiles

Next steps

* Assessment of LD2 on industry
relevant applications

+ Assessment of EARSM based
' HRLM in M-Edge on aeronautical
] applications

Synthetic turbulence at RANS-
LES interfaces

Improved RANS-LES coupling for
hybrid and embedded approaches

Improved accuracy

Resolved turbulent srtuctures

Periodic hill flow

Credits: Magnus Carlsson | magnus.carlssno@chalmers.se




Challenges and outlook

Challenges
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To achieve accuracy and efficiency with HRLM
needed for industrial applicability

Robust and efficient low dissipation and low
dispertion schemes

Geometrically arbitrary RANS-LES interfaces
for embedded LES

+ Efficient grey-area mitigation methods

Efficient and robust grey-area mitigation
methods for seamless HRLM

User independent seamless HRLM methods
for industrial complex applications

Efficient and robust industry applicable mesh
generation strategies for accurate HRLM

Outlook

HRLM needed to meet industrial
requirements on

* more cost effective products,
« enhanced aircraft capabilities,
* reduced environmental footprint
* emissions
* noise
Improved CFD accuracy = less testing
and more simulations
* Wind tunnel tests and flight tests can
be traded for CFD

An extensive increase in use of HRLM in
the aeronautical industry
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S. Arvidson | sebastian.arvidson@saabgroup.com

Gripen E at take-off
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