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Why CFD?

Source:
[1] www.bombardier.com
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Why CFD?

Skin friction/drag reduction is the key for economically and
ecologically more efficient transport

Source:
[1] www.bombardier.com

Traveling distance per person per full day
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Study case: NACA 4412,

0.12c

0.04c

NACA 4412:
Maximum camber of 4% at 40% chord with a maximum thickness of 12%

Friction drag Pressure
drag
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Numerical setup(1)

• Spectral-element code
Nek5000(2)

• 216 million grid points (N=11)

• 10 million core-hours

• Domain:

• Wall-resolved LES: �

� �

• Time-resolved

• LES using a relaxation-type filter
model (Schlatter et al. 2005)

• Tripping at

(1): Vinuesa et al., Int. J. Heat Fluid Flow (2018), 72:86-99
(2): https://nek5000.mcs.anl.gov/, Fischer et al., (2008)
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Control strategies(1)

Suction Side

Uniform Blowing

Uniform Suction

0.1% U∞

0.2% U∞

0.1% U∞

0.2% U∞

Uniform BlowingPressure Side
0.1% U∞

0.2% U∞

Suction Side Body-force damping As blowing, 0.1% U∞

1

2

3

4

5

6

7

(1) Atzori et al. DLES-12 2019
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Effect of control

Profiles at:

APG: �

pressure sidesuction side
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Effect of control

Profiles at:

APG, blowing: �

pressure sidesuction side
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Effect of control

Profiles at:

Suction: �

APG, blowing: �

pressure
side

suction side pressure sidesuction side
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Effect of control

APG: �

pressure sidesuction side
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Effect of control

pressure sidesuction side

APG, blowing: �

pressure sidesuction side
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Effect of control

pressure sidesuction side

Suction: �

APG, blowing: �

pressure sidesuction side
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Friction drag (FIK) decomposition(1,2)

(1): Fukagata et al., Phys. Fluids (2002), 14:73-74
(2): Kametami et al., Int. J. Heat Fluid Flow (2015), 55:132-142
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pressure sidesuction side

FIK: Boundary-layer thickness
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pressure sidesuction side

FIK: Turbulent fluctuations
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pressure sidesuction side

FIK: Streamwise inhomogeneity
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pressure sidesuction side

FIK: Pressure gradient
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Aerodynamic effects

Case Cd,f Cd,p Cd=cd,f+cd,p Cl L/D

Reference 0.0125 0.0071 0.0196 0.87 44

Blowing 0.1%, s. side

Blowing 0.2%, s. side

Suction 0.1%, s. side

Suction 0.2%, s. side

Body force 0.1%, s. side

Blowing 0.1%, p. side

Blowing 0.2%, p. side

�
�

�
�

�,� �,� �
�

�
�
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Aerodynamic effects

Case Cd,f Cd,p Cd=cd,f+cd,p Cl L/D

Reference 0.0125 0.0071 0.0196 0.87 44

Blowing 0.1%, s. side 0.0119 ↓ 0.0082 ↑ 0.0201 ↑ 0.84 ↓ 42 (-4%) ↓

Blowing 0.2%, s. side 0.0115 ↓ 0.0091 ↑ 0.0206 ↑ 0.82 ↓ 40 (-9%) ↓

Suction 0.1%, s. side

Suction 0.2%, s. side

Body force 0.1%, s. side

Blowing 0.1%, p. side

Blowing 0.2%, p. side

�
�

�
�
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Aerodynamic effects

Case Cd,f Cd,p Cd=cd,f+cd,p Cl E=L/D

Reference 0.0125 0.0071 0.0196 0.87 44

Blowing 0.1%, s. side 0.0119 ↓ 0.0082 ↑ 0.0201 ↑ 0.84 ↓ 42 (-4%) ↓

Blowing 0.2%, s. side 0.0115 ↓ 0.0091 ↑ 0.0206 ↑ 0.82 ↓ 40 (-9%) ↓

Suction 0.1%, s. side 0.0131 ↑ 0.0063 ↓ 0.0194 ↓ 0.89 ↑ 46 (+4%) ↑

Suction 0.2%, s. side 0.0137 ↑ 0.0058 ↓ 0.0195 ↓ 0.91 ↑ 47 (+7%) ↑

Body force 0.1%, s. side 0.0118 ↓ 0.0077 ↑ 0.0196 = 0.88 ↑ 45 (+2%) ↑

Blowing 0.1%, p. side 0.0120 ↓ 0.0070 ↓ 0.0190 ↓ 0.87 = 46 (+4%) ↑

Blowing 0.2%, p. side 0.0116 ↓ 0.0070 ↓ 0.0186 ↓ 0.88 ↑ 47 (+7%) ↑

�
�

�
�
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Reynolds number dependency

 Friction drag becomes more relevant at higher Re

o Optimal control mechanism expected to change

(1): Fahland, Master’s thesis KIT (2019)
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Reynolds number dependency

 Friction drag becomes more relevant at higher Re

o Optimal control mechanism expected to change

o Simulations much more expensive ( (1))

 Need an optimized numerical setup!

(1): Choi and Moin, Physics of Fluids (2012), 24:011702
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Direct numerical simulation of flow over a
full NACA4412 wing at Rec = 400 000

 DNS with Nek5000

 Ret=400, Req=2800

 AoA=5 deg.

 zL=10% chord

Transition to
turbulence

Turbulence
on the wing

Flow separation
Wake turbulence

• 3.2 billion grid points
• 35 million core-hours needed

for convergence of turbulence
• 75 TB data

2016…

(1) Hosseini et al. Int. J. Heat Fluid Flow (2016)
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High-resolution LES of NACA-4412(1)

LES with relaxation filtering (Schlatter et al. 2005)

(1) Vinuesa et al. Int. J. Heat Fluid Flow 2018

Factor 40 reduction
in computational effort

2018…
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High-resolution LES of NACA-4412

LES with relaxation filtering (Schlatter et al. 2005)

Goal: Reach (at least) Rec=1.6 M similar to
the (reference) experiments
by Wadcock (1987)
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Adaptive simulations

Mesh refinement Element
identified
for refinement
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Adaptive simulations

Mesh refinement Element
identified
for refinement

• “Ease” of implementation
• Greatest potential
• New data structure
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Legendre spectral coefficients

 Truncated spectral expansion in
Legendre base in 1D (local)

 Error estimate
• Assumed spectral decay

• Truncation and quadrature errors

Spectral error indicator

(1): Mavriplis, Comput. Methods Appl. Mech. Engrg. (1994)
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Adaptive simulations with Nek5000

What we can do…

… but potentially expensive with certain error estimators!
 Freeze the mesh after a run of refinements

 Fully on the fly!
 Refining and

coarsening
 Tracking features

(1): Offermans, PhD thesis KTH (2019)
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3D AMR NACA 4412 Rec = 850 000
2019

(1): Tanarro et al: TSFP 11 (2019)
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Comparison between conformal and non-
conformal mesh

Conformal Non-conformal

Code Nek5000

Rec 200,000

Resolution (wing) Δx+ = 18, Δy+ = 0.64, Δz+ = 9 Δx+ = 7, Δy+ = 0.58, Δz+ = 4

Resolution (wake) Δx < 9η (ΔxΔyΔz)1/3< 9η

Domain size Lx = 6c, Ly = 4c, Lz = 0.2c Lx = 40c, Ly = 40c, Lz = 0.6c

Polynomial order 11 7

Number of grid points 218 M 234 M (3x larger Lz!)

B.C. inflow & top/bottom Dirichlet (RANS) Dirichlet U∞ = 1 & Normal
outflow with tangential U∞ = 1

B.C. outflow Stabilised outflow by Dong et al. (2014)

B.C. in z-direction Periodic
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AMR NACA 4412, Rec = 200 000

Comparison of mesh structure
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Skin-friction coefficient and 99% boundary layer
thickness (Rec=200k)

Slight discrepancy in the skin-friction
coefficient which could be the result of the
higher resolution of the non-conformal
mesh in the wall.

Excellent agreement on the
computation of the boundary-layer
thickness d99.

pressure side

suction side
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Mean velocity and rms profiles
(Rec=200k)

Differences are mostly due to inner scaling (i.e. the friction coefficient). All the
qualitative aspects are recovered with both simulations.

 = 2
(moderate APG)
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“Real Experiments” in the MTL wind tunnel
(KTH Mechanics)

 Complement and extend numerical simulations

 Reynolds number up to 2 M

Spring 2019: Implementation and validation
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“Real Experiments” in the MTL wind tunnel
(KTH Mechanics)

 Complement and extend numerical simulations

 Reynolds number up to 2 M

Hotwire Anemometry

LDV / PIV

Spring 2020: BL measurements
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Conclusions

- Flow-control simulations using high-order (spectral) methods

- First in-detail study of the different contributors to drag on a wing

- Suction on suction-side and blowing in pressure-side lead to
highest drag reduction at moderate Re

- Steps towards increasing the achievable Re

- LES RT-filtering

- Implementation of Adaptive Mesh Refinement (AMR) in NEK5000

- Highest Re for reference high-fidelity data of turbulence in wings

- Experiments in the MTL wind tunnel


