

Flexible Aircraft Modeling Using Multibody Dynamics and Unsteady Aerodynamics

W. N. Schinestzki, L. B. da Luz, <u>C. E. de Souza</u>, P. Paglione

Federal University of Santa Maria Mechanical Engineering Department Aerospace Engineering Course October 8th, 2019

1. Introduction

- 2. Models
 - Structural model
 - Aerodynamics
 - Flight dynamics and kinematics
 - Complete framework
- 3. Numerical Studies
- 4. Concluding Remarks
- 5. References

1. Introduction Motivation

- Aircraft flexibility effects are still under research Kalthof, 2014
- Increasingly aircraft are designed to be more flexible Vepa, 2014
- Exploring some flexibility benefits so as load alleviation and passengers' comfort Kalthof, 2014
- Potential application of aeroelastic analyzes in preliminary design phases Hofstee et al., 2003

1. Introduction Goals

Wider research challenge: Model flexible aircraft with morphing wings;

- At the moment, the work is divided into two main tasks:
 - \diamond control of trailing edge morphing \diamond simulation of flexible aircraft

with a multibody approach

Present work goal

Establish a framework for simulation of morphing wings considering flight dynamics of flexible aircraft

2. Models Proposed framework

2. Models Proposed framework

2. Models Proposed framework

Airframe dynamics

Multibody dynamics with flexible bodies, based on formulation given by Shabana, 2013;

Structural model

Rayleigh-Ritz, prescribed modes, such as given in Rao, 2018, and adapted from Shabana, 2013;

Aerodynamic model

Modified Strip Theory, barmby approach, adapted from implementation by Pogorzelski, 2010

2. Models Multibody modeling

2. Models Dinâmica de Multicorpos

And the second s

Generalized mass matrix:

$$[\mathbf{m}] = \begin{bmatrix} [\mathbf{m}]^1 & \mathbf{0} & \dots & \mathbf{0} \\ \mathbf{0} & [\mathbf{m}]^2 & \dots & \mathbf{0} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{0} & \mathbf{0} & \dots & [\mathbf{m}]^{N_b} \end{bmatrix}$$

Generalized accelerations:

$$\{\mathbf{q}\} = \begin{cases} \{\mathbf{q}\}^1\\ \{\mathbf{q}\}^2\\ \vdots\\ \{\mathbf{q}\}^{N_b} \end{cases}$$

Body constraints:

$$\mathbf{C}(\mathbf{q},t) = \begin{cases} \{\mathbf{R}\}^{1} - \{\mathbf{R}\}^{2} \\ \{\mathbf{\Theta}\}^{1} - \{\mathbf{\Theta}\}^{2} \\ \vdots \\ \{\mathbf{R}\}^{1} - \{\mathbf{R}\}^{N_{b}} \\ \{\mathbf{\Theta}\}^{1} - \{\mathbf{\Theta}\}^{N_{b}} \end{cases} = \begin{cases} \mathbf{0} \\ \mathbf{0} \\ \vdots \\ \mathbf{0} \\ \mathbf{0} \end{cases}$$

Stiffness given by prescribed modes.

2. Models Modal shapes for cantilever beam

Euler-Bernoulli

1

- Saint-Venant
- Rayleigh-Ritz method

2.1. Structural model

2. Models Modal shapes for cantilever beam

Euler-Bernoulli

4

- Saint-Venant
- Rayleigh-Ritz method

$$\int_0^1 \Phi_i(\xi) \Phi_j(\xi) \ d\xi = \begin{cases} 0, & i \neq j \\ 1, & i = j \end{cases}$$

$$\bar{\bar{\mathbf{u}}}_{f} = \begin{bmatrix} u_{1}^{f} \\ u_{2}^{f} \\ u_{3}^{f} \end{bmatrix} = \begin{bmatrix} 0 & 0 & x_{3}\Phi_{1}^{f} & x_{3}\Phi_{2}^{f} \\ -x_{3}\frac{d\Phi_{1}^{f}}{dx_{2}} & -x_{3}\frac{d\Phi_{2}^{f}}{dx_{2}} & 0 & 0 \\ \Phi_{1}^{f} & \Phi_{2}^{f} & -x_{1}\Phi_{1}^{f} & -x_{1}\Phi_{2}^{f} \end{bmatrix} \begin{bmatrix} q_{1}^{f} \\ q_{2}^{f} \\ q_{1}^{f} \\ q_{2}^{f} \end{bmatrix}$$

$$\bar{\mathbf{u}}_{f} = \mathbf{E} \begin{bmatrix} 2 \\ u_{3}^{f} \end{bmatrix} = \begin{bmatrix} 0 & 0 & x_{3}\Phi_{1}^{f} & x_{3}\Phi_{2}^{f} \\ -x_{3}\frac{d\Phi_{2}^{f}}{dx_{2}} & 0 & 0 \\ \Phi_{1}^{f} & \Phi_{2}^{f} & -x_{1}\Phi_{1}^{f} & -x_{1}\Phi_{2}^{f} \end{bmatrix} \begin{bmatrix} q_{1}^{f} \\ q_{2}^{f} \\ q_{2}^{f} \\ q_{2}^{f} \end{bmatrix}$$

2. Models Aerodynamic model - strip theory

Modified Strip Theory (MST)

- Unsteady strip theory
 good computational cost / precision
 rate
- Unsteady modified strip theory (UMST)
 barmby

1

2. Models Aerodynamic model - strip theory

Modified Strip Theory (MST)

- Unsteady strip theory
 good computational cost / precision
 rate
- Unsteady modified strip theory (UMST)
 barmby

Rigid body motion corrections

Forces on each strip are transformed into forces and moments in frequency domain on the Body Reference Systems

$$\Rightarrow \overline{\mathbf{F}}_{a}^{F}(ik) \qquad \Rightarrow \overline{\mathbf{\tau}}_{a}^{F}(ik)$$

Presenter: Carlos E. de Souza

FT 2019 - Stockholm - Sweden

October 8th, 2019 9 / 25

2. Models

2.2. Aerodynamics

Aerodynamic Influence Coefficients Matrix AIC

Total AIC matrix for multibodies:

$$\overline{\mathbf{Q}}_{a}^{F}(ik) \triangleq \begin{bmatrix} \overline{\mathbf{F}}_{a}^{F} \\ \overline{\boldsymbol{\tau}}_{a}^{F} \end{bmatrix} = \mathbf{AIC}^{F}(ik)\Delta \mathbf{x}_{a}$$

Rational function approximation - Roger method. Use Padé polynomials to obtain approximate **AIC**:

$$\mathbf{AIC}_{ap}(ik) = [\mathbf{A}_0] + ik[\mathbf{A}_1] + (ik)^2[\mathbf{A}_2] + \sum_{n=1}^{n_{lag}} \frac{ik[\mathbf{A}_{n+2}]}{ik + \beta_n}$$

2. Models Displacement kinematics

2.3. Flight dynamics and kinematics

2. Models

2.3. Flight dynamics and kinematics

Atitude Euler and coordinate transformations

2. Models Atitude Euler angles and Kinematics

Translation:

$$\dot{\mathbf{r}} = \mathbf{A}_{BI} \dot{\bar{\mathbf{r}}}$$

Rotation:

$$\overline{\boldsymbol{\omega}} = \begin{bmatrix} \dot{\boldsymbol{\phi}} \\ 0 \\ 0 \end{bmatrix} + \mathbf{C}_1(\boldsymbol{\phi}) \begin{bmatrix} 0 \\ \dot{\boldsymbol{\theta}} \\ 0 \end{bmatrix} + \mathbf{C}_1(\boldsymbol{\phi}) \mathbf{C}_2(\boldsymbol{\theta}) \begin{bmatrix} 0 \\ 0 \\ \psi \end{bmatrix}$$

$$\dot{\mathbf{\Theta}} = [\overline{\mathbf{G}}]^{-1} \, \overline{\boldsymbol{\omega}}$$
$$[\overline{\mathbf{G}}]^{-1} = \begin{bmatrix} 1 & \sin(\phi)\tan(\theta) & \cos(\phi)\tan(\theta) \\ 0 & \cos(\phi) & -\sin(\phi) \\ 0 & \sec(\theta)\sin(\phi) & \cos(\phi)\sec(\theta) \end{bmatrix}$$

Presenter: Carlos E. de Souza

2.3. Flight dynamics and kinematics

2. Models

2.3. Flight dynamics and kinematics

Generalized Newton-Euler equations

$$\begin{bmatrix} \mathbf{m}_{RR} & \widetilde{\mathbf{S}}_{t}^{T} & \overline{\mathbf{S}} \\ \widetilde{\mathbf{S}}_{t} & \overline{\mathbf{I}}_{\Theta\Theta} & \overline{\mathbf{I}}_{\Theta f} \\ \overline{\mathbf{S}}^{T} & \overline{\mathbf{I}}_{\Theta f}^{T} & \mathbf{m}_{ff} \end{bmatrix} \begin{bmatrix} \ddot{\mathbf{r}} \\ \overline{\mathbf{\Omega}} \\ \ddot{\mathbf{q}}_{f} \end{bmatrix} = \begin{bmatrix} \overline{\mathbf{Q}}_{\nu}^{R} \\ \mathbf{Q}_{\nu}^{\Omega} \\ \mathbf{Q}_{\nu}^{Q} \end{bmatrix} + \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \\ \mathbf{Q}_{s}^{G} \end{bmatrix} + \begin{bmatrix} \overline{\mathbf{F}}_{a} + m\overline{\mathbf{g}} \\ \widetilde{\mathbf{u}}(\overline{\mathbf{F}}_{a} + m\overline{\mathbf{g}}) + \overline{\boldsymbol{\tau}}_{a} \\ \mathbf{S}^{T} \ \overline{\mathbf{F}}_{a} + \frac{\partial \mathbf{S}^{T}}{\partial x_{1}} \mathbf{\Pi}_{23} \overline{\overline{\boldsymbol{\tau}}}_{a} \end{bmatrix}$$

$$\mathbf{Q}_{s}^{f} = -\mathbf{K}_{ff}\mathbf{q}_{f} - \mathbf{D}_{ff}\dot{\mathbf{q}}_{f}$$

$$\begin{bmatrix} \overline{\mathbf{Q}}_{\nu}^{R} \\ \mathbf{Q}_{\nu}^{\Omega} \\ \mathbf{Q}_{\nu}^{f} \end{bmatrix} = \begin{bmatrix} \widetilde{\boldsymbol{\varpi}} \ \widetilde{\boldsymbol{\varpi}} \ \widetilde{\boldsymbol{\varpi}} \ \overline{\mathbf{S}}_{t} - 2 \widetilde{\boldsymbol{\varpi}} \mathbf{A}_{SB} \overline{\mathbf{S}}_{\dot{\mathbf{q}}f} \\ -\widetilde{\boldsymbol{\varpi}} \ \overline{\mathbf{I}}_{\Theta\Theta} \overline{\boldsymbol{\varpi}} - \overline{\mathbf{I}}_{\Theta\Theta} \overline{\boldsymbol{\varpi}} - \widetilde{\overline{\mathbf{\sigma}}} \ \overline{\mathbf{I}}_{\Theta f} \dot{\mathbf{q}}_{f} \\ - \int_{V} \rho \mathbf{S}^{T} \mathbf{A}_{SB}^{T} \widetilde{\boldsymbol{\varpi}} (\widetilde{\boldsymbol{\varpi}} \ \overline{\mathbf{u}} + 2 \mathbf{A}_{SB} \mathbf{S} \dot{\mathbf{q}}_{f}) \ dV \end{bmatrix} \begin{bmatrix} \mathbf{m} \\ \mathbf{m} \\ \mathbf{m} \end{bmatrix}$$

Final multibody equations
$$\begin{bmatrix} \mathbf{m} & \mathbf{C}_{\mathbf{q}}^{T} \\ \mathbf{C}_{\mathbf{q}} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \ddot{\mathbf{q}} \\ \boldsymbol{\lambda} \end{bmatrix} = \begin{bmatrix} \mathbf{Q}_{v} + \mathbf{Q}_{s} + \mathbf{Q}_{e} \\ \mathbf{0} \end{bmatrix}$$

2. Models Numerical framework

Presenter: Carlos E. de Souza

3. Numerical Studies Reference Aircraft and strips model

3. Numerical Studies Study: equilibrium condition

	sederal de	
30	444	ŝ
2012	36	ž
n.	æ¢.	ŝ
	1960	

Parameters	Rigid body	Flexible body
Velocity, $V [km/h]$	80	80
Altitude, <i>H</i> [<i>m</i>]	2000	2000
Angle of Attack, $lpha$ [°]	4.1614	4.0961
Pitch angle, $oldsymbol{ heta}$ [°]	2.6284	2.5871
Roll angle, $oldsymbol{\phi}$ [°]	0	0
Elevator deflection, δ_{e} [°]	-5.2204	-5.0786

3. Numerical Studies Study: equilibrium condition

Elastic coordinate		Rigid body	Flexible body	Elastic coordinate		Rigid body	Flexible body
Bending 1 RW, q_{11}^{f}	[m]	0	-0.04650	Bending 1 RHT, q_{13}^{f}	[m]	0	-0.000118
Bending 2 RW, q_{21}^{f}	[m]	0	-0.00248	Bending 2 RHT, q_{23}^{f}	m	0	-0.000006
Torsion 1 RW, q_{11}^{t}	[°]	0	0.00010	Torsion 1 RHT, q_{13}^{t}	°]	0	0.000063
Torsion 2 RW, q_{21}^{t}	°	0	0.00001	Torsion 2 RHT, q_{23}^t	0	0	0.000007
Bending 1 LW, q_{12}^{f}	[m]	0	-0.04650	Bending 1 LHT, q_{14}^{f}	[m]	0	-0.000118
Bending 2 LW, q_{22}^{f}	[m]	0	-0.00248	Bending 2 LHT, q_{24}^{f}	m	0	-0.000006
Torsion 1 LW, $q_{12}^{\tilde{t}_{12}}$	[°]	0	-0.00010	Torsion 1 LHT, $q_{14}^{\tilde{t}_{14}}$	[°]	0	-0.000063
Torsion 2 LW, $q_{22}^{i ilde{ extsf{2}}}$	[°]	0	-0.00001	Torsion 2 LHT, $q_{24}^{\hat{t}}$	°]	0	-0.000007
				Bending 1 VT, q_{15}^{f}	[m]	0	0
				Bending 2 VT, q_{25}^{f}	m	0	0
				Torsion 1 VT, $q_{15}^{\tilde{t}_{25}}$	[°]	0	0
				Torsion 2 VT, q_{25}^{t}	0	0	0

3. Numerical Studies Study: Gust profile

And the second s

Applying gust to the left wing only:

$$w_g(x_0, y_0) = \begin{cases} -\frac{V_{0w}}{2} \left[1 - \cos\left(\frac{\pi(x_0 - x_{0w})}{H_w}\right) \right], & x_{0w} \le x_0 \le x_{fw} \\ 0, & y_{0w} \le y_0 \le y_{fw} \\ 0, & \text{otherwise} \end{cases}$$

Presenter: Carlos E. de Souza

FT 2019 - Stockholm - Sweden

3. Numerical Studies Study: Gust profile - models comparison

Comparison between:

aerodynamic model	aircraft
quasi-steady quasi-steady unsteady unsteady	rigid Flexible rigid Flexible
	aerodynamic model quasi-steady quasi-steady unsteady unsteady

3. Numerical Studies Study: Gust profile - models comparison

Comparison between:

case	aerodynamic model	aircraft
QSR QSF USR	quasi-steady quasi-steady unsteady	rigid Flexible rigid
USF	unsteady	Flexible

FT 2019 - Stockholm - Sweden

θ []

10

9 10

3. Numerical Studies Study: Gust profile - models comparison

Comparison between:

case	aerodynamic model	aircraft
QSR QSF USR USF	quasi-steady quasi-steady unsteady unsteady	rigid Flexible rigid Flexible

FT 2019 - Stockholm - Sweden

3. Numerical Studies Generalized elastic coordinates

Torsion

t [s]

t [s]

LW

- RW

- BHT

- VT

3

4. Concluding Remarks Conclusions from current study

- Achieved: flight mechanics model for flexible aircraft using multibody dynamics
- Simplified structural model is possible when experimental data is available for calibrating beam models
- Flexibility combined with unsteady aerodynamics leads to more oscillating responses
- Framework developed allows quick simulations (mostly analytical models)
- Creates a wide range of possibilities to be explored combining this modeling with morphing wing control

Next: couple the control model implemented by da Luz, et al.

Flexible Aircraft Modeling Using Multibody Dynamics and Unsteady Aerodynamics

W. N. Schinestzki, L. B. da Luz, <u>C. E. de Souza</u>, P. Paglione leobdl.formula@gmail.com, wilcker.formula@gmail.com, carlos.souza@ufsm.br, pedro.paglione@gmail.com

6. References Bibliography I

- Hofstee, J., Kier, T., Cerulli, C., and Looye, G. (2003). "A Variable, Fully Flexible Dynamic Response Tool For Special Investigations (VARLOADS)". In: Proceedings International Forum on Aeroelasticity and Structural Dynamics. Amsterdan: Nederlandse Vereniging voor Luchtvaarttechniek.
- Kalthof, R. L. C. (2014). "Multibody Dynamics Modeling of Flexible Aircraft Flight Dynamics: Load Prediction in the Preliminary Design Phase". Mestrado em Engenharia Aeroespacial. Delft: Universidade Tecnológica de Delft, p. 150.
- Pogorzelski, G. (2010). "Dinâmica de Aeronaves Flexíveis Empregando Teoria das Faixas Não-Estacionária". Mestrado em Engenharia Aeronáutica e Mecânica. São José dos Campos: Instituto Tecnológico de Aeronáutica, p. 326.
- Rao, S. (2018). Mechanical vibrations in SI units. 6ed. Pearson. ISBN: 978-0-134-36130-7,1-292-17860-4,978-1-292-17860-8,9781292178615,1292178612.
- Shabana, A. (2013). *Dynamics of Multibody Systems*. 4th ed. Cambridge University Press. ISBN: 978-1-107-04265-0.

6. References Bibliography II

Vepa, R. (2014). Flight Dynamics, Simulation, and Control: For Rigid and Flexible Aircraft. CRC Press. ISBN: 978-1-4665-7336-9.