

Friction drag reduction via closed-loop control with plasma actuators

Pierluigi Morra¹, P. Brito², R. Larsson³, A.V.G. Cavalieri², A. Hanifi¹, D.S. Henningson¹

¹KTH Royal Institute of Technology, Dept. of Mechanics (Sweden) ²Istituto Tecnologico de Aeronautica (Brazil) ³SAAB Aeronautics

Drag sources

 Possible areas for laminar flow control: laminar wings, tail, nacelles

15% lower fuel consumption!

Friction drag

• Turbulent regime

15000.0

high friction drag!

 Disturbances (TS-waves) in the boundary layer flow lead to the turbulent regime

Turbulent regime

TS-waves

Direct Numerical Simulation

Direct Numerical Simulation

Direct Numerical Simulation

- Flow control to delay laminar-to-turbulence transition by damping TS-waves
- Active method: energy given to the flow (plasma actuator)
- Control theory to modulate the actuation signal

Experimental setup

Plasma actuator

CAD model for wind-tunnel experiments (SAAB)

Actuation signal based on upstream sensor

$$u(t) := \int_0^t K(\tau) \ y(t-\tau) \,\mathrm{d}\tau$$

• \hat{K} computed via the IFFC control law (DNS & experiments), LQG and FxLMS (DNS)

Plasma actuator

Fig. 23 Typically applied CV with boundary nomenclature as used in the present work: (*a*) integral force value *F*, and (*b*) force distribution f(x, y). Velocity distribution is sketched with black arrows, and force (distribution) is shaded gray. (Reprinted with permission from Kriegseis et al. [149]. Copyright 2012 by Jochen Kriegseis.)

Plasma actuator

Fig. 4 Forcing field corresponding to the actuator model used here.

• Disturbance generated by a set of speakers

Plasma actuator

Fig. 33 "Experimentally and computationally obtained mean velocity profiles u(y) at selected streamwise locations x; implemented models: Wilke [154] and Albrecht et al. [155], according to Shyy et al. [169] and Suzen et al. [170]; PIV data: Kriegseis [38]." (Reprinted with permission from Maden et al. [167]. Copyright 2012 by Imdat Maden.)

Experimental results

(KTH Lab: S. Mamidala, B. Fallenius, J. Fransson)

Successful single frequency cancellation

Experimental setup

 NACA0008 wing manufactured by SAAB (L. Hjelm, B. Roxberg) in the wind-tunnel of the Istituto Tecnologico de Aeronautics (Brazil)

Experimental results

2 ×10⁻³ Unfiltered Signal - R = 500 - V = 10m/s - PSD (Z) Uncontrolled Controlled 1.8 70% reduction 1.6 1.4 Disturbance amplitude 80 1 C 0.6 0.4 0.2 0 150 200 250 300 350 400 450 500 Frequency (Hz)

Broadband disturbance

 Successful closed-loop control of white noise perturbation in the windtunnel experiment

DNS vs Experiments

$$\hat{u}(\omega) = \hat{K}(\omega)\hat{y}(\omega)$$
$$\hat{K}(\omega) = \frac{\hat{G}_{uz}^{*}(\omega)\hat{G}_{yz}(\omega)}{\hat{R} + \hat{G}_{uz}^{*}(\omega)\hat{G}_{uz}(\omega)}$$

Need the transfer functions!

DNS vs Experiments

$$\hat{u}(\omega) = \hat{K}(\omega)\hat{y}(\omega)$$
$$\hat{K}(\omega) = \frac{\hat{G}_{uz}^*(\omega)\hat{G}_{yz}(\omega)}{\hat{R} + \hat{G}_{uz}^*(\omega)\hat{G}_{uz}(\omega)}$$

Need the transfer functions!

DNS vs Experiments

DNS results

 Successful closed-loop control of white noise perturbation in the direct numerical simulation

Pierluigi Morra - KTH Mechanics

DNS results

Summary & Conclusions

- Successful closed-loop control of TS-waves achieved
- Direct numerical simulations predict well the wind-tunnel experiments
- Direct numerical simulations can be used as a virtual wind tunnel in addition to wind tunnel experiments to accelerate the design process

