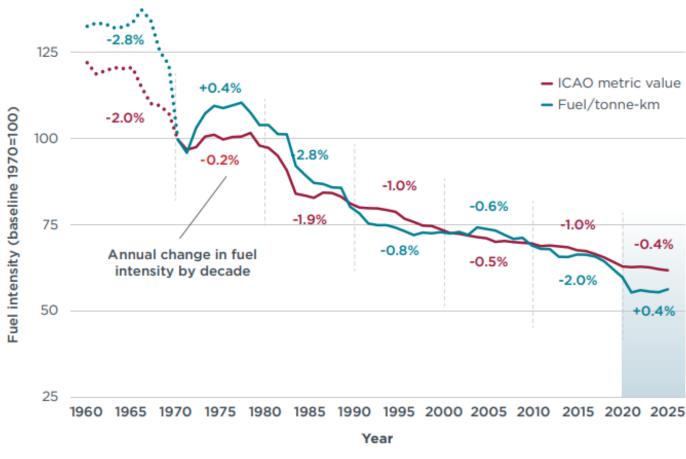


Towards efficient disruptive technologies for new aircraft in service by 2035

Swedish Aerospace Technology Congress 14 October 2025

Sébastien **DUBOIS**Head of Unit, Programme
Development & Communication
Clean Aviation

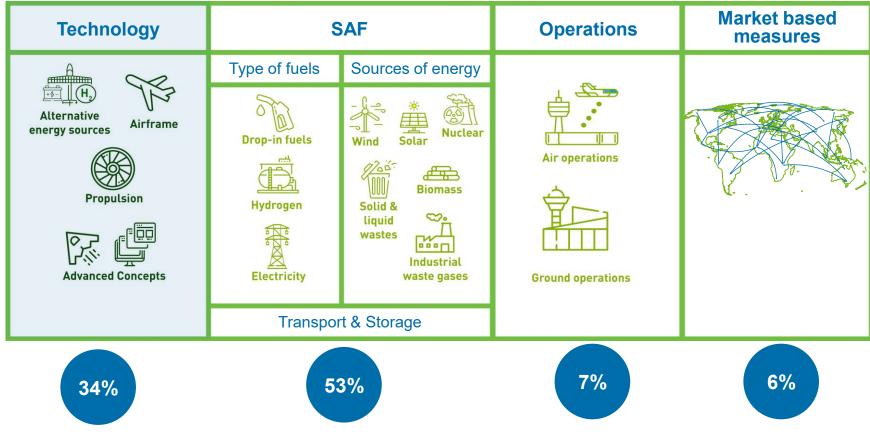


SECTION 1

The Performance Challenge

Fuel burn trends for new commercial aircraft

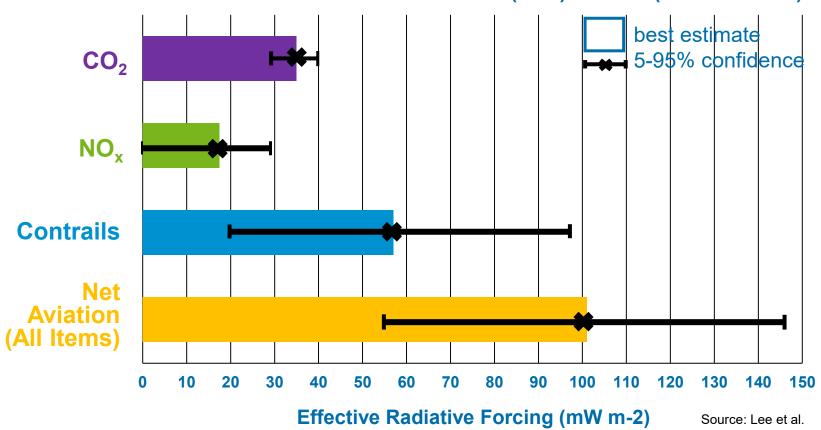
Performance improvements are dependant on the introduction of newer aircraft models

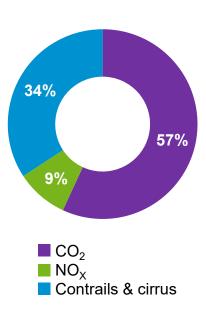


The CO₂ contribution reduction panorama by 2050

Breakthrough in CO₂ reduction will be triggered by disruptive **technologies** & SAF

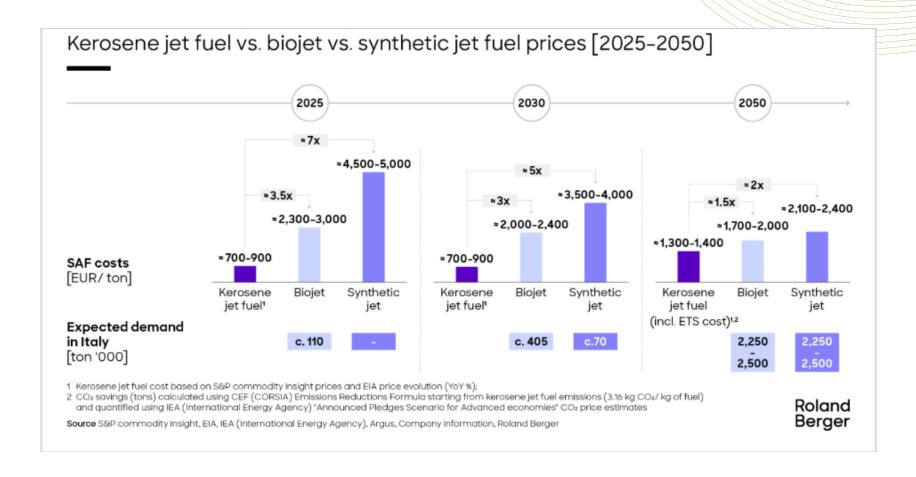
ICAO WORK ON LONG-TERM ASPIRATIONAL GOAL



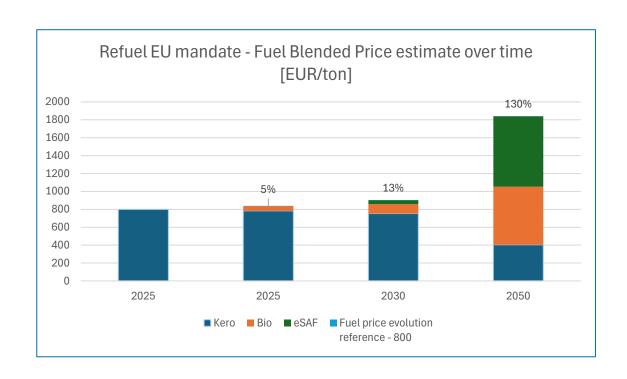

Climate Impact is NOT only about CO₂

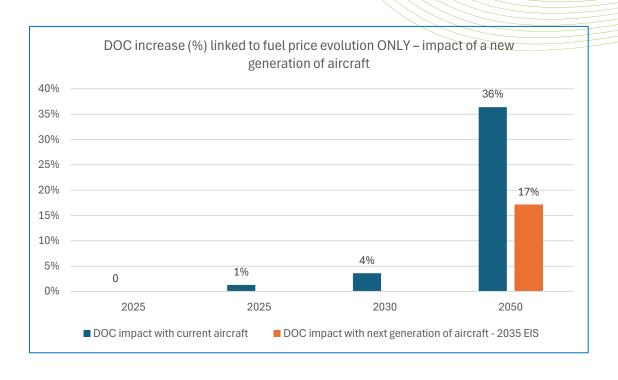
GLOBAL AVIATION EFFECTIVE RADIATIVE FORCING (ERF) TERMS (1940 TO 2018)

GLOBAL WARMING POTENTIAL


Source: DLR

Fuel price evolution – estimates

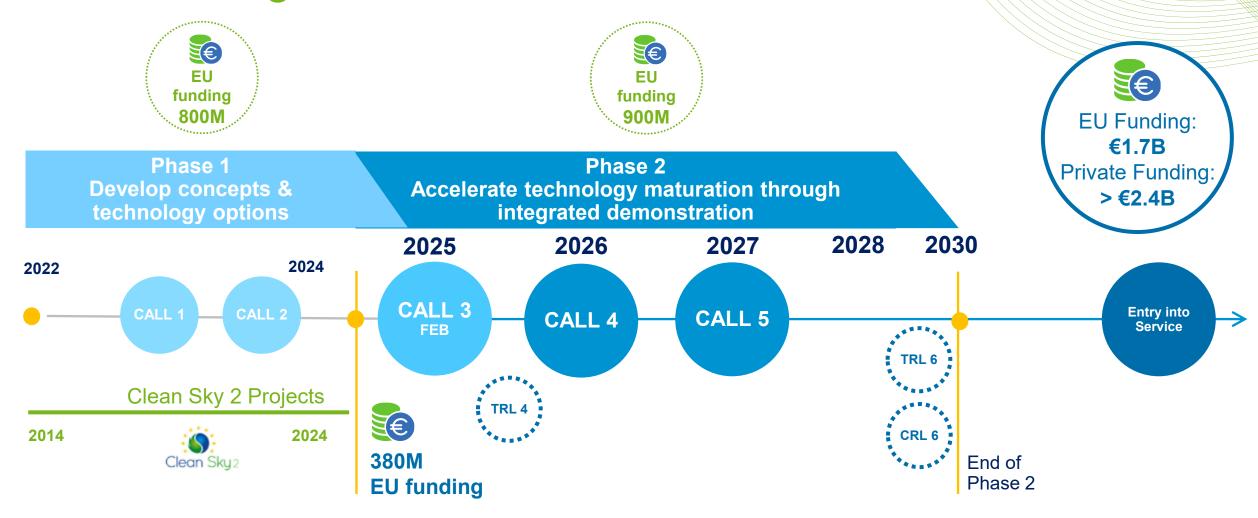

Biojet & eSAF prices will remain 35% to 70% more expensive than kerosene in 2050



The need for a new generation of aircraft

>>> Transitioning to carbon neutrality while preserving the competitiveness of airlines required a new a generation of aircraft (30% improved performance) and the availability of SAF at a competitive price

Clean Aviation: an impact driven programme

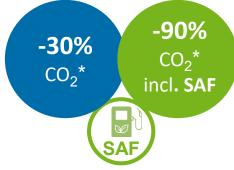

Support
Entry-into-Service
of new aircraft
by
2035

75%
fleet replacement by 2050

Accelerating maturation & demonstration

Call 3: 12 projects with New Fast Track Areas € \$380M € 570M

ULTRA-EFFICIENT SHORT-MEDIUM RANGE AIRCRAFT	ULTRA-EFFICIENT REGIONAL AIRCRAFT	FAST-TRACK AREAS	AIRCRAFT CONCEPT INTEGRATION & IMPACT ASSESSMENT
TAKE OFF Technology And Knowledge for European Open Fan Flight SAFRAN AIRCRAFT ENGINES	PHARES Powerplant Hybrid Application for REgional Segment PRATT & WHITNEY CANADA CORP.	CRYOSTAR Certification Roadmap to Yield an Optimal and Safety methodology of crashworthiness for an integrated cryogenic Tank for liquid hydrogen storAge on board of future aircraft UNIVERSITA DEGLI STUDI DELLA CAMPANIA LUIGI VANVITELLI	HERACLES Hybrid Electric Regional Aircraft Concept for Low EmissionS AVIONS DE TRANSPORT REGIONAL
LEIA Large scalE Integration demonstrator of hybrid electrical Architecture AIRBUS OPERATIONS GMBH	DEMETRA Demonstrator of an Electrified Modern Efficient Transport Regional Aircraft AVIONS DE TRANSPORT REGIONAL	MODABAT Modular, scalable and technology-Open Design for future Aviation BATteries FRAUNHOFER GESELLSCHAFT ZUR FÖRDERUNG DER ANGEWANDTEN FORSCHUNG EV	ACI&I Short Medium Range - Aircraft Configuration Integration and Impact AIRBUS OPERATIONS GMBH
UNIFIED Ultra Novel and Innovative Fully Integrated Engine Demonstrations ROLLS-ROYCE PLC	OSYRYS On-board SYstems Relevant for hYbridization of Regional aircraftS SAFRAN ELECTRICAL & POWER	POWER4AIR Arc Fault Detection, low EMI and Reliability for Power Electronics in Electric Aircrafts SKYLIFE ENGINEERING SL	
		LIME Lithium based Innovation for Modular Energy ASCENDANCE FLIGHT TECHNOLOGIES	


Clean Aviation's aircraft concepts

* non-CO₂ effects not yet quantified

SMR Aircraft:

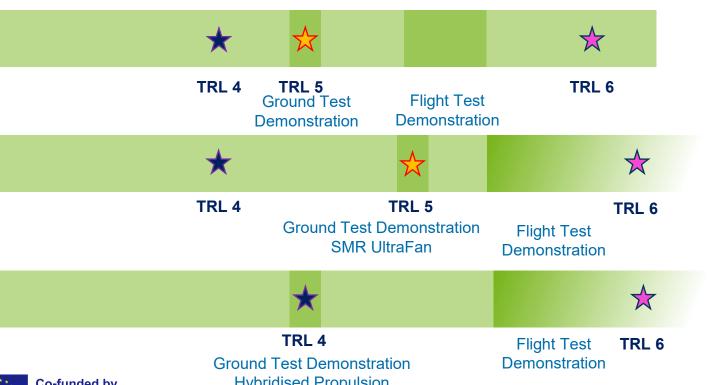
Main tech challenges

Integrated fuselage and rear end fuselage, cabin & cargo (up to -3% CO₂ emissions @ aircraft level)

Ultra Efficient Propulsion & Propulsion Integration (approx. -20% CO₂ emissions @ component level)

Ultra performing wing with high aspect ratio (up to -15% CO₂ emissions @ aircraft level)

Small Medium Range Technology Roadmap



State of the Art 2020

2023 2024 2025 2026 2027 2028 2029 2030 **EIS 2035**

Unducted Engine Concept

Ducted Engine Concepts

Hybridised Propulsion

Small Medium Range Technology Roadmap

Reference:

2020

State of the Art

2023

2024

4 2

2025

2026

2027

2028

2029

2030

EIS 2035

On Ground Demonstration of a Non-Propulsive Energy Systems Platform

On Ground Demonstration of a Optimized System Platform

Ultra-efficient RFE & Industrial Systems

2% CO2 reduction at AC level

High rate Industrial system @100p/m

Phase 1 - Technical progresses

OFELIA

First full-scale demonstrator parts manufactured for testing

HEAVEN

Architecture studies confirm the project can meet fuel burn reduction targets

Flight

2023 DLR high-pressure combustion chamber test rig

- Advanced compact core engine combustion technologies using both JET-A1 and SAF at critical operating conditions assessed
- Optimum open fan installation to maximise fuel burn and acoustic emissions reductions

2024

SESTA LAB full annular combustion test rig

 HP Core Technology assessed successfully at TRL4 2025

2026

- TRL4 on key technologies for the Open Fan Low Pressure
- First full-scale demonstrator parts manufactured for testing
- Maturation of advanced systems technologies

- TRL5 on Reduction Gear Box and Open fan architecture
- Ground test & Flight test preparation

2025-26 **TRL Engine** 4/5 **PDR** end of 2025 UltraFan SMR

engine architecture

- Development of the propulsion system MBSE supporting the SMR architecture definition
- Design of the key elements of the SMR engine: Power Gearbox, Combustion system FSN
- Subsystem maturation: Fan, IPT, hybridisation

- Testing the key components for the SMR engine architecture, demonstrating TRL5 at subsystem level
- Completion of SMR engine integration studies
- Virtual PDR of the engine architecture at SMR scale, demonstrating TRL4 at system level

Regional Aircraft: Main tech challenges

Aerodynamic and airframe optimisation (approx. -10% CO₂ emission @ aircraft level) Hybrid-electric propulsion with batteries **Advanced** Safety & (approx. -20% emission cabin operability @ aircraft level) solutions solutions

Ultra-Efficient Regional Technology Roadmap

Reference:

State of the Art 2020

2023

2024

2025

2026

2027

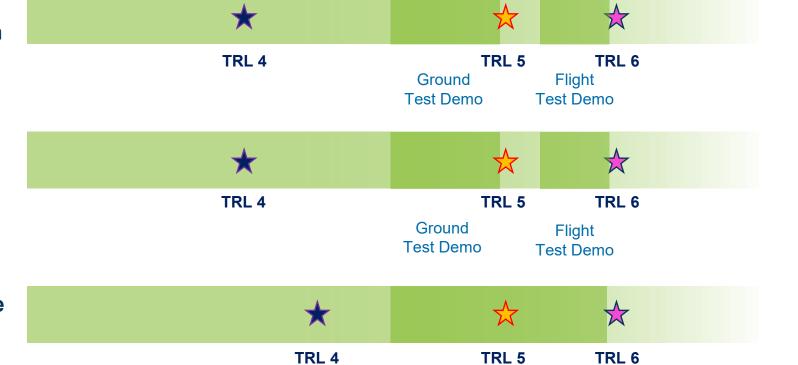
2028

2029

Ground Test Demo

2030

EIS 2035


-20%

 CO_2

Hybrid-Electric Propulsion System (HEPS)

Electric distribution & thermal management **Systems**

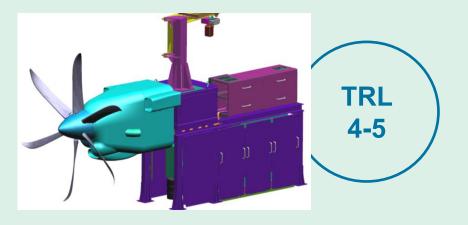
Advanced Airframe (and enabling systems)

Phase 1 - Technical progresses

AMBER

Finalisation of the conceptual design reviews of the power train and related techno-bricks

HE-ART


Technology bricks matured towards the critical design review

AMBER innovAtive deMonstrator for hyBrid-Electric Regional application

2023-24

2025-26

- ~2MW Hybrid electric propulsive architecture conceptual design
- Preliminary design of all key techno-bricks
- A/C integration studies and engagement with EASA
- Launch of long lead time procurements

- HE Power train final design
- All key technos developed, assembled and tested
- MW-class FC and E-motor system validation
- Integration HE power train testing

HE-ART Hybrid Electric propulsion system for regional AiRcrafT

- System and sub-system Preliminary Design and Critical Desing gate Review
- Components (heat exchanger, electric machine) and materials (Engine mounting systems) testing to support system design and performance validation
- Testing facility modifications started

- Complete Critical design and release drawing
- Purchase, manufacturing and testing techno-bricks
- Progress Ground Test Facility modifications and assemble the hybrid-electric propulsion system
- Testing in representative operative conditions incl. extensive hybridization rates and flight

Hydrogen aircraft: Main tech challenges

LH₂ storage:

2x higher energy density (12 kWh/kg or gravimetric index of 35%)

Fuselage & empennage technologies:

safe installation of tank, compliance with safety (crashworthiness) LH₂ distribution: safe, reliable management incl. leakage

Fuel cell system:

2-3x higher power density (2kW/kg), high life-time, low cooling drag

H₂ turbines:

high efficiency and low NO_X emissions

H2

Hydrogen Powered Aircraft Technology Roadmap

CLEAN AVIATION

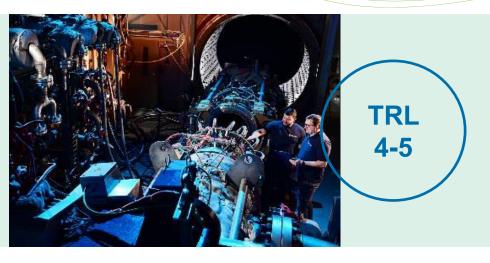
Phase 1 - Technical progresses

CAVENDISH

Completion of annual combustion rig tests up to maximum take-off conditions

FAME

Manufacturing of the first subsystems



CAVENDISH Hydrogen combustion engine demonstrator

2023-24

2025-26

- Full annular combustor with novel spray nozzles 100% hydrogen tested in representative engine conditions
- Initial tests performed on modern donor engine to calibrate and prepare for subsequent hydrogen tests
- Components development for full scale engine test

- Engine upgrade with novel actuation and thermal management for hydrogen
- Engine test preparation including test facility readiness, hydrogen components availability for a first test with gaseous hydrogen
- Hydrogen propulsion system aircraft installation studies and safety analysis performed

FAME Fuel cell propulsion system for Aircraft Megawatt Engines

AEROSTACK

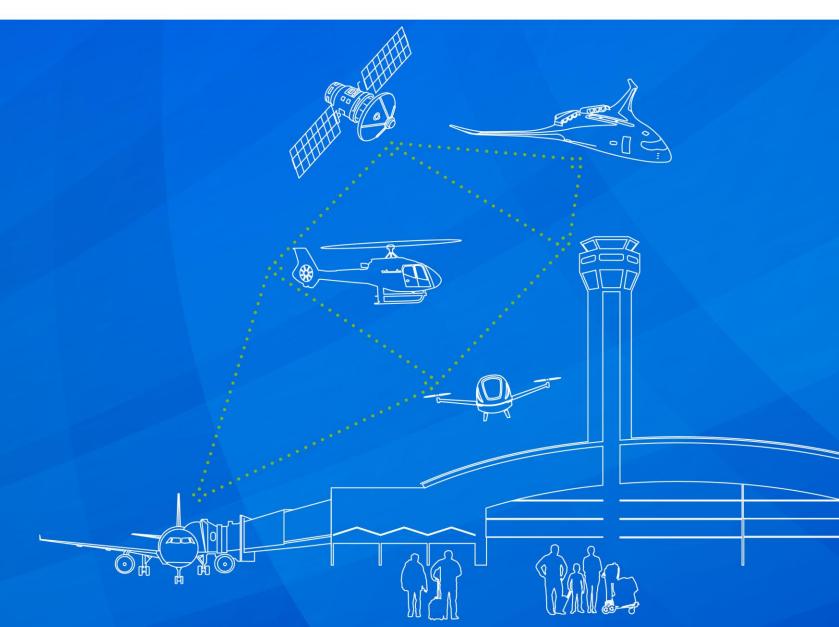
TRL 3

Magna Steyr Fahrzeuglechnik GmbH & Co KG

- Top Level Aircraft Requirements defined, subsystem specifications determined
- Architecture of the ground test demonstrator finalised
- Development of key components and subsystems, with manufacturing and functional testing of the first ones

- Development of the subsystems finalised, integration into the Ground Test Demonstrator (GTD)
- 1MW Fuel Cell GTD commissioning, testing to validate TRL5 @ subsystem and TRL4 @ system level
- Design scaling and optimisation of the 2-4MW POD propulsion system, considering aircraft integration

Aviation Research & Innovation Strategy (ARIS)

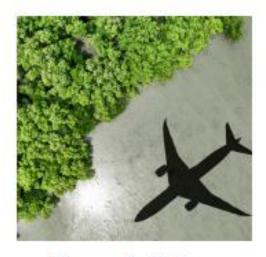


AVIATION RESEARCH & INNOVATION STRATEGY

A pathway to competitive and sustainable aviation supporting Europe's sovereignty.

ARIS: handover to the European Commission

AVIATION RESEARCH & INNOVATION STRATEGY


A pathway to competitive and sustainable aviation supporting Europe's sovereignty

- ARIS handover to Commissioner
 Apostolos
 Tzitzikostas
- Paris Airshow, 16 June 2025
- +100 contributors

Clean aviation official recognition: Moonshot project

Moonshots

Clean Aviation

What: Lead the world in developing the next generation of CO₂-free aircraft.

ARIS: A Strategic Roadmap for Competitive and Sustainable Aviation

Europe's aviation leadership in some areas is strong but not guaranteed

Aviation is vital to Europe's economy and sovereignty

Urgent
investment in R&I
is needed
to stay competitive
and meet
climate goals

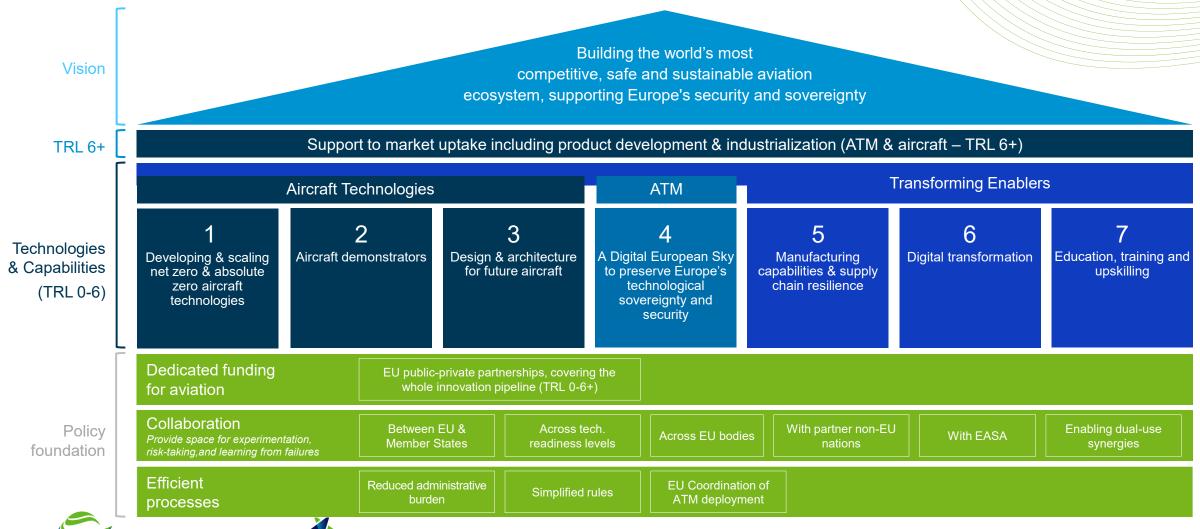
Three key areas for R&I investment:

> AircraftTechnologies> Air TrafficManagement> Transforming

Enablers

Collaboration is key:
a Europe-wide
R&I strategy

2028-2034 EU multiannual financial framework:


EUR 66 bn investment (of which **EUR 22.5 bn** at EU level) in EU aviation R&I and support to market uptake to meet competitiveness, sustainability, and sovereignty objectives

A new framework for action on European aviation

Call for action

Accelerating investments across the full innovation pipeline, from research to market uptake (TRL0 to TRL6+) for a competitive and sustainable EU aviation economy

Strengthening investments to build a strong and resilient EU supply chain and creating conditions for successul deployments

Shaping conditions for a future Clean Aviation Moonshot partnership

